首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N1 and N9 neuraminidase (NA) subtypes of influenza A viruses exhibit significant hemadsorption activity that localizes to a site distinct from that of the enzymatic active site. To determine the conservation of hemadsorption activity among different NAs, we have examined most of the NA subtypes from avian, swine, equine, and human virus isolates. All subtypes of avian virus NAs examined and one equine virus N8 NA possessed high levels of hemadsorption activity. A swine virus N1 NA exhibited only weak hemadsorption activity, while in human virus N1 and N2 NAs, the activity was detected at a much lower level than in avian virus NAs. NAs which possessed hemadsorption activity for chicken erythrocytes (RBCs) were similarly able to adsorb human RBCs. However, none of the hemadsorption-positive NAs could bind equine, swine, or bovine RBCs, suggesting that RBCs from these species lack molecules, recognized by the NA hemadsorption site, present on human and chicken RBCs. Mutagenesis of the putative hemadsorption site of A/duck/Hong Kong/7/75 N2 NA abolished the high level of hemadsorption activity exhibited by the wild-type protein but also resulted in a 50% reduction of the NA enzymatic activity. A transfectant virus, generated by reverse genetics, containing this mutated NA replicated 10-fold less efficiently in chicken embryo fibroblast cultures than did a transfectant virus expressing the wild-type NA. However, both viruses replicated equally well in Peking ducks. Although conservation of NA hemadsorption activity among avian virus NAs suggests the maintenance of a required function of NA, loss of the activity does not preclude the replication of the virus in an avian host.  相似文献   

2.
Influenza A viruses possess two glycoprotein spikes on the virion surface: hemagglutinin (HA), which binds to oligosaccharides containing terminal sialic acid, and neuraminidase (NA), which removes terminal sialic acid from oligosaccharides. Hence, the interplay between these receptor-binding and receptor-destroying functions assumes major importance in viral replication. In contrast to the well-characterized role of HA in host range restriction of influenza viruses, there is only limited information on the role of NA substrate specificity in viral replication among different animal species. We therefore investigated the substrate specificities of NA for linkages between N-acetyl sialic acid and galactose (NeuAcalpha2-3Gal and NeuAcalpha2-6Gal) and for different molecular species of sialic acids (N-acetyl and N-glycolyl sialic acids) in influenza A viruses isolated from human, avian, and pig hosts. Substrate specificity assays showed that all viruses had similar specificities for NeuAcalpha2-3Gal, while the activities for NeuAcalpha2-6Gal ranged from marginal, as represented by avian and early N2 human viruses, to high (although only one-third the activity for NeuAcalpha2-3Gal), as represented by swine and more recent N2 human viruses. Using site-specific mutagenesis, we identified in the earliest human virus with a detectable increase in NeuAcalpha2-6Gal specificity a change at position 275 (from isoleucine to valine) that enhanced the specificity for this substrate. Valine at position 275 was maintained in all later human viruses as well as swine viruses. A similar examination of N-glycolylneuraminic acid (NeuGc) specificity showed that avian viruses and most human viruses had low to moderate activity for this substrate, with the exception of most human viruses isolated between 1967 and 1969, whose NeuGc specificity was as high as that of swine viruses. The amino acid at position 431 was found to determine the level of NeuGc specificity of NA: lysine conferred high NeuGc specificity, while proline, glutamine, and glutamic acid were associated with lower NeuGc specificity. Both residues 275 and 431 lie close to the enzymatic active site but are not directly involved in the reaction mechanism. This finding suggests that the adaptation of NA to different substrates occurs by a mechanism of amino acid substitutions that subtly alter the conformation of NA in and around the active site to facilitate the binding of different species of sialic acid.  相似文献   

3.
Whether chicken Mx inhibits influenza virus replication is an important question with regard to strategies aimed at enhancing influenza resistance in domestic flocks. The Asn631 polymorphism of the chicken Mx protein found in the Shamo (SHK) chicken line was previously reported to be crucial for the antiviral activity of this highly polymorphic chicken gene. Our aims were to determine whether cells from commercial chicken lines containing Asn631 alleles were resistant to influenza virus infection and to investigate the effects that other polymorphisms might have on Mx function. Unexpectedly, we found that the Asn631 genotype had no impact on multicycle replication of influenza virus (A/WSN/33 [H1N1]) in primary chicken embryo fibroblast lines. Furthermore, expression of the Shamo (SHK) chicken Mx protein in transfected 293T cells did not inhibit viral gene expression (A/PR/8/34 [H1N1], A/Duck/England/62 [H4N6], and A/Duck/Singapore/97 [H5N3]). Lastly, in minireplicon systems (A/PR/8/34 and A/Turkey/England/50-92/91 [H5N1]), which were highly sensitive to inhibition by the murine Mx1 and human MxA proteins, respectively, Shamo chicken Mx also proved ineffective in the context of avian as well as mammalian cell backgrounds. Our findings demonstrate that Asn631 chicken Mx alleles do not inhibit influenza virus replication of the five strains tested here and efforts to increase the frequency of Asn631 alleles in commercial chicken populations are not warranted. Nevertheless, chicken Mx variants with anti-influenza activity might still exist. The flow cytometry and minireplicon assays described herein could be used as efficient functional screens to identify such active chicken Mx alleles.  相似文献   

4.
To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.  相似文献   

5.
Two important glycoproteins on the influenza virus membrane, hemagglutinin (HA) and neuraminidase (NA), are relevant to virus replication. As previously reported, HA has a substrate specificity towards SIA-2,3-GAL-1,4-NAG (3SL) and SIA-2,6-GAL-1,4-NAG (6SL) glycans, while NA can cleave both types of linkages. However, the substrate binding into NA and its preference are not well understood. In this work, the glycan binding and specificity of human and avian NAs were evaluated by classical molecular dynamics (MD) simulations, whilst the conformational diversity of 3SL avian and 6SL human glycans in an unbound state was investigated by replica exchange MD simulations. The results indicated that the 3SL avian receptor fits well in the binding cavity of all NAs and does not require a conformational change for such binding compared to the flexible shape of the 6SL human receptor. From the QM/MM-GBSA binding free energy and decomposition free energy data, 6SL showed a much stronger binding towards human NAs (H1N1, H2N2 and H3N2) than to avian NAs (H5N1 and H7N9). This suggests that influenza NAs have a substrate specificity corresponding to their HA, indicating the functional balance between the two important glycoproteins. Both linkages show distinct glycan topologies when complexed with NAs, while the flexibility of torsion angles between GAL and NAG in 6SL results in the various shapes of glycan and different binding patterns. Lower conformational diversities of both glycans when bound to NA compared to the unbound state were found, and were required in order to be accommodated within the NA cavity.

Communicated by Ramaswamy H. Sarma  相似文献   


6.
The viral surface glycoprotein neuraminidase (NA) allows the influenza virus penetration and the egress of virions. NAs are classified as A, B, and C. Type-A NAs from influenza virus are subdivided into two phylogenetically distinct families, group-1 and group-2. NA inhibition by oseltamivir represents a therapeutic approach against the avian influenza virus H5N1. Here, structural bases for oseltamivir recognition by group-1 NA1, NA8 and group-2 NA9 are highlighted by the ScrewFit algorithm for quantitative structure comparison. Oseltamivir binding to NA1 and NA8 affects the geometry of Glu119 and of regions Arg130-Ser160, Val240-Gly260, and Asp330-Glu382, leading to multiple NA conformations. Additionally, although NA1 and NA9 share almost the same oseltamivir-bound final conformation, they show some relevant differences as suggested by the ScrewFit algorithm. These results indicate that the design of new NA inhibitors should take into account these family-specific effects induced on the whole structure of NAs.  相似文献   

7.
The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.  相似文献   

8.
The hemagglutinin (HA) of H3 human influenza viruses does not support viral replication in duck intestine despite its avian origin. A Leu-to-Gln mutation at position 226 and a Ser-to-Gly mutation at position 228 in the HA of human A/Udorn/307/72 (H3N2) permit a reassortant virus [human Udorn HA, with all other genes from A/mallard/New York/6750/78 (H2N2)] to replicate in ducks. To understand the molecular basis of this change in host range restriction, we investigated the receptor specificity of duck influenza viruses as well as of human-duck virus reassortants. The results indicate that the recognition of a glycoconjugate moiety possessing N-glycolneuramic acid (NeuGc) linked to galactose by the alpha2,3 linkage (NeuGcalpha2,3Gal) is associated with viral replication in duck intestine. Immunofluorescence assays with NeuGcalpha2,3Gal-specific antiserum detected this moiety primarily on the crypt epithelial cells of duck colon. Such recognition, together with biochemical evidence of NeuGc in crypt cells, correlated exactly with the ability of the virus to replicate in duck colon. These results suggest that recognition of the NeuGcalpha2,3-Gal moiety plays an important role in the enterotropism of avian influenza viruses.  相似文献   

9.
10.
The influenza virus neuraminidase (NA) is a tetrameric, virus surface glycoprotein possessing receptor-destroying activity. This enzyme facilitates viral release and is a target of anti-influenza virus drugs. The NA structure has been extensively studied, and the locations of disulfide bonds within the NA monomers have been identified. Because mutation of cysteine residues in other systems has resulted in temperature-sensitive (ts) proteins, we asked whether mutation of cysteine residues in the influenza virus NA would yield ts mutants. The ability to rationally design tight and stable ts mutations could facilitate the creation of efficient helper viruses for influenza virus reverse genetics experiments. We generated a series of cysteine-to-glycine mutants in the influenza A/WSN/33 virus NA. These were assayed for neuraminidase activity in a transient expression system, and active mutants were rescued into infectious virus by using established reverse genetics techniques. Mutation of two cysteines not involved in intrasubunit disulfide bonds, C49 and C146, had modest effects on enzymatic activity and on viral replication. Mutation of two cysteines, C303 and C320, which participate in a single disulfide bond located in the beta5L0,1 loop, produced ts enzymes. Additionally, the C303G and C320G transfectant viruses were found to be attenuated and ts. Because both the C303G and C320G viruses exhibited stable ts phenotypes, they were tested as helper viruses in reverse genetics experiments. Efficiently rescued were an N1 neuraminidase from an avian H5N1 virus, an N2 neuraminidase from a human H3N2 virus, and an N7 neuraminidase from an H7N7 equine virus. Thus, these cysteine-to-glycine NA mutants allow the rescue of a variety of wild-type and mutant NAs into influenza virus.  相似文献   

11.
利用一个瞬时共转染系统,将H5N1亚型禽流感病毒的血凝素(Hemagglutinin,HA)蛋白与神经氨酸酶(Neuraminidase,NA)蛋白整合到鼠白血病病毒假病毒颗粒表面,包装成表达HA与NA的假病毒颗粒,通过透射电子显微镜形态学观察、感染滴度分析、血凝试验和中和试验研究其生物学特性。研究获得了高滴度感染力的H5N1假病毒颗粒(H5N1 Pseudotyped particle,H5N1Pp),H5N1Pp的感染力滴度为1E8 Pp/mL,形态、血凝活性及中和特性均与野生H5N1病毒相似,结果为H5N1病毒受体、HA与NA的功能、中和抗体、抗病毒药物开发研究的开展建立了平台。  相似文献   

12.
Human T lymphocyte clones (TLC) specific for type A (A/Texas/1/77) influenza virus and maintained in continuous culture with T cell growth factor, were analyzed to define the cellular specificity pattern of virus recognition. A panel of TLC were stimulated with strains of serologically characterized type A influenza subtypes. Five TLC recognized all the viral subtypes; the remaining clones recognized only subtypes that shared serologically defined determinants with the immunizing subtype. In addition, the 11 TLC were analyzed for their fine antigenic specificity by using the purified viral components hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP). Five TLC proliferated in response to NA, four to MP, one to HA, and one to NP. None of the clones responded to the unrelated B strain influenza virus, B/Singapore. Furthermore, the fine specificity of an MP-reactive TLC was confirmed by subcloning.  相似文献   

13.
Influenza A neuraminidase (NA) is a target for anti-influenza drugs. The function of this enzyme is to cleave a glycosidic linkage of a host cell receptor that links sialic acid (Sia) to galactose (Gal), to allow the virus to leave an infected cell and propagate. The receptor is an oligosaccharide on the host cell surface. There are two types of oligosaccharide receptor; the first, which is found mainly on avian epithelial cell surfaces, links Sia with Gal by an α2,3 glycosidic linkage; in the second, found mainly on human epithelial cell surfaces, linkage is via an α2,6 linkage. Some researchers believe that NAs from different viruses show selectivity for each type of linkage, but there is limited information available to confirm this hypothesis. To see if the linkage type is more specific to any particular NA, a number of NA-receptor complexes of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and a pandemic strain of H1N1 (2009) were constructed using homology modeling and molecular dynamics simulation. The results show that the two types of receptor analogues bound to NAs use different mechanisms. Moreover, it was found that a residue unique to avian virus NA is responsible for the recognition of the Siaα2,3Gal receptor, and a residue unique to human virus NA is responsible for the recognition of Siaα2,6Gal. We believe that this finding could explain how NAs of different virus origins always possess some unique residues.  相似文献   

14.
The receptor specificity of influenza viruses is one factor that allows avian influenza viruses to cross the species barrier. The recent transmissions of avian H5N1 and H9N2 influenza viruses from chickens and/or quails to humans indicate that avian influenza viruses can directly infect humans without an intermediate host, such as pigs. In this study, we used two strains of influenza A virus (A/PR/8/34, which preferentially binds to an avian-type receptor, and A/Memphis/1/71, which preferentially binds to a human-type receptor) to probe the receptor specificities in host cells. Epithelial cells of both quail and chicken intestines (colons) could bind both avian- and human-type viruses. Infected cultured quail colon cells expressed viral protein and allowed replication of the virus strain A/PR/8/34 or A/Memphis/1/71. To understand the molecular basis of these phenomena, we further investigated the abundance of sialic acid (Sia) linked to galactose (Gal) by the alpha2-3 linkage (Siaalpha2-3Gal) and Siaalpha2-6Gal in host cells. In glycoprotein and glycolipid fractions from quail and chicken colon epithelial cells, there were some bound components of Sia-Gal linkage-specific lectins, Maackia amurensis agglutinin (specific for Siaalpha2-3 Gal) and Sambucus nigra agglutinin (specific for Siaalpha2-6Gal), indicating that both Siaalpha2-3Gal and Siaalpha2-6Gal exist in quail and chicken colon cells. Furthermore, we demonstrated by fluorescence high-performance liquid chromatography (HPLC) analysis that 5-N-acetylneuraminic acid was the main molecular species of Sia, and we demonstrated by multi-dimensional HPLC mapping and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis that bi-antennary complex-type glycans alpha2-6 sialylated at the terminal Gal residue(s) are major (more than 79%) sialyl N-glycans expressed by intestinal epithelial tissues in both the chicken and quail. Taken together, these results indicate that quails and chickens have molecular characterization as potential intermediate hosts for avian influenza virus transmission to humans and could generate new influenza viruses with pandemic potential.  相似文献   

15.
Four human pandemic influenza A virus strains isolated in 1957 and 1968, but not most of the epidemic strains isolated after 1968, possess sialidase activity under low-pH conditions. Here, we used cell-expressed neuraminidases (NAs) to determine the region of the N2 NA that is associated with low-pH stability of sialidase activity. We found that consensus amino acid regions responsible for low-pH stability did not exist in pandemic NAs but that two amino acid substitutions in the low-pH-stable A/Hong Kong/1/68 (H3N2) NA and a single substitution in the low-pH-unstable A/Texas/68 (H2N2) NA resulted in significant change in low-pH stability.  相似文献   

16.
Influenza virus neuraminidase (NA) cleaves off sialic acid from cellular receptors of hemagglutinin (HA) to enable progeny escape from infected cells. However, NA variants (D151G) of recent human H3N2 viruses have also been reported to bind receptors on red blood cells, but the nature of these receptors and the effect of the mutation on NA activity were not established. Here, we compare the functional and structural properties of a human H3N2 NA from A/Tanzania/205/2010 and its D151G mutant, which supports HA-independent receptor binding. While the wild-type NA efficiently cleaves sialic acid from both α2-6- and α2-3-linked glycans, the mutant exhibits much reduced enzymatic activity toward both types of sialosides. Conversely, while wild-type NA shows no detectable binding to sialosides, the D151G NA exhibits avid binding with broad specificity toward α2-3 sialosides. D151G NA binds the 3′ sialyllactosamine (3′-SLN) and 6′-SLN sialosides with equilibrium dissociation constant (KD) values of 30.0 μM and 645 μM, respectively, which correspond to much higher affinities than the corresponding affinities (low mM) of HA to these glycans. Crystal structures of wild-type and mutant NAs reveal the structural basis for glycan binding in the active site by exclusively impairing the glycosidic bond hydrolysis step. The general significance of D151 among influenza virus NAs was further explored by introducing the D151G mutation into three N1 NAs and one N2 NA, which all exhibited reduced enzymatic activity and preferential binding to α2-3 sialosides. Since the enzymatic and binding activities of NAs are not routinely assessed, the potential for NA receptor binding to contribute to influenza virus biology may be underappreciated.  相似文献   

17.
When expressed in vitro, the neuraminidase (NA) of A/WSN/33 (WSN) virus binds and sequesters plasminogen on the cell surface, leading to enhanced cleavage of the viral hemagglutinin. To obtain direct evidence that the plasminogen-binding activity of the NA enhances the pathogenicity of WSN virus, we generated mutant viruses whose NAs lacked plasminogen-binding activity because of a mutation at the C terminus, from Lys to Arg or Leu. In the presence of trypsin, these mutant viruses replicated similarly to wild-type virus in cell culture. By contrast, in the presence of plasminogen, the mutant viruses failed to undergo multiple cycles of replication while the wild-type virus grew normally. The mutant viruses showed attenuated growth in mice and failed to grow at all in the brain. Furthermore, another mutant WSN virus, possessing an NA with a glycosylation site at position 130 (146 in N2 numbering), leading to the loss of neurovirulence, failed to grow in cell culture in the presence of plasminogen. We conclude that the plasminogen-binding activity of the WSN NA determines its pathogenicity in mice.  相似文献   

18.
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.  相似文献   

19.
Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.  相似文献   

20.
近年来华东地区家鸭中禽流感病毒的亚型分布   总被引:3,自引:0,他引:3  
[目的]为了研究近年来华东地区家鸭中禽流感病毒的亚型分布情况.[方法]对2002-2006年分离自华东地区家鸭的180株禽流感病毒的HA亚型和其中88株禽流感病毒的NA亚型分别进行了测定.[结果]近年来华东地区家鸭中至少存在9种HA亚型和6种NA亚型组成的H1N1,H3N1,H3N2,H3N8,H4N6,H5N1,H5N2,H6N2,H6N8,H8N4,H9N2,H10N3,H11N2共13种亚型的禽流感病毒.[结论]华东地区家鸭中有多种亚型的禽流感病毒分布,应加强家鸭禽流感的监测和防制工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号