首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Responses of abaxial and adaxial stomata of Populus trichocarpa Torr. & Gray. × P. deltoides Bartr. (ex Marsh.) cv. Unal to incident light, sudden darkening and leaf excision in the light and in the dark were studied on 5-year-old trees in the field using diffusion porometry. Stomatal closure in the dark was found to be incomplete in most cases studies. Stomata closed after leaf excision in the dark within 90 min. Stomatal closure after darkening of an entire tree or an entire branch (white the rest of the tree was in the light) was slower, and complete stomatal closure was noticed only for adaxial stomata after 3 h. Adaxial stomata were more reactive and sensitive than abaxial stomata to sudden darkening and leaf excision in the light and the dark. In all treatments, stomatal response was more responsive in mature leaves than in young, still expanding leaves.  相似文献   

2.
Cell enlargement in primary leaves of bean seedlings grown for10 days in dim red light in response to different light andphytohormone treatments was studied. On day 10, bean leaf discswere floated on 1% sucrose with, or without, phytohormones fordifferent periods (up to 24 h) under dim red light, or discswere floated in sucrose solution and irradiated with white orblue light. Cell enlargement was enhanced by continuous whiteand blue light and by benzyladenine, kinetin and gibberellicacid. When seedlings were grown for 8 days under dim red light afterwhich a 2-day dark period was interposed (for the accumulationof inactive phytochrome), cell enlargement was enhanced by a5-min irradiation with red light. This growth induction wasfar-red reversible. The conditions under which cell enlargement was promoted, alsoinduced the opening of the stomata. Red light induced a far-redreversible transient stomatal opening. Based on the kineticsof stomatal opening and cell enlargement we formulated the hypothesisthat cell enlargement in leaves in response to light and phytohormonesis mediated by the stomatal response to these factors. (Received September 30, 1983; Accepted February 27, 1984)  相似文献   

3.
After a photoperiod of 8.25 h during which the youngest fullyexpanded leaf of uniculm barley plants was allowed to assimilate14CO2 for 30 min, groups of plants were transfered either tocontinuous light or to continuous dark. Plants were harvestedover a 72 h period to examine the effect of the treatments (comparedwith control plants growing in normal light/dark cycles) onthe transport of 14C from the exposed leaf, the distributionof 14C assimilates to the rest of the plant, and the chemicalfate of assimilated 14C. In continuous light a substantial quantity (22% at 72 h) ofthe 14C assimilated by the leaf remained in that leaf in theform of starch and neutral sugars compared with only 4% in thecontrol fed leaf. Also the total amount of 14C respired fromplants maintained in continuous light was significantly less(c. 18% of the total originally fixed by 24 h) than that respiredfrom control plants (c. 36%). The result was that approximatelyequal amounts of 14C were accumulated in the growing leavesand roots of plants given continuous light or normal light/darkcycles. In continuous dark the fate of 14C was similar to that of controlplants. This is probably because the two treatments shared acommon light/dark environment for the first 22 h, during whichtime almost complete distribution and utilization of 14C occurred.  相似文献   

4.
5.
《Aquatic Botany》1987,28(1):89-96
A two-hormone system regulating leaf development in the heterophyllous amphibious angiosperm Proserpinaca palustris L. is described. Aerial shoots develop expanded, lanceolate, serrate leaves under long-day photoperiods (LD, 16 h light: 8 h dark), whereas growth under short days (SD, 10 h light: 14 h dark) induces dissected leaf formation. The photoperiodic effect on leaf development of aerial shoots involves changes in endogenous gibberellins (GAs) since plants grown under SD in the presence of GA3 develop expanded lanceolate serrate leaves. However, when submerged, shoots develop highly dissectedaquatic leaves regardless of photoperiod or GA3 treatment. In the present study, submerged plants exposed to 1.0 or 5.0 μM abscisic acid (ABA) developed aerial-type leaves typical of the photoperiod under which they were cultured. Both exogenous ABA (5.0 μM) and GA3 (10 μM) treatments were required for laminar expansion to occur on submerged shoots under SD. It is suggested that (1) leaf development in Proserpinaca is regulated by both endogenous GAs and ABA, and (2) the endogenous status of these phytohormones is modulated by different environmental stimuli of photoperiod and water stress, respectively. The adaptive significance of this mechanism is discussed.  相似文献   

6.
The ability of stomata to close in response to abiotic factors was studied on different-aged leaves of in-vitro-grown clone Mr. S. 2/5 plum (Prunus cerasifera) shoots. Epidermal peels removed from the first, third and fifth leaf in basipetal sequence from the shoot tip were exposed to 50 mm mannitol, 10 mm coumarin or dark treatment. The control solution consisted of 1 mm KC1 in 0.5 mm 2-(N-morpholino)ethanesulphonic acid. The percentage of stomata that closed following such treatments became progressively lower with increasing leaf age. The effect of mannitol was greater than that of coumarin. With dark treatment, pronounced closure was observed in the apical leaf, while on the third and fifth leaf, values were lower but not statistically different. Finally, the kinetics of stomatal closure assessed during mannitol incubation indicated a progressively slower response from the first to the fifth leaf. The more effective stomatal functioning of the youngest leaf was confirmed by a more pronounced stomatal re-opening observed in epidermal peels first treated with mannitol and then incubated again in the control solution. Received: 20 June 1997 / Revision received: 17 July 1998 / Accepted: 25 August 1998  相似文献   

7.
以盆栽野牛草克隆分株为材料,将克隆分株分别标记为O(姊株)和Y(妹株),设置连接组和断开组两种处理,其中,连接组中O分株和Y分株通过节间子相连,断开组则剪断分株节间子;两组处理的O分株光周期均设置为光照12h/黑暗12h,Y分株光周期均设置为黑暗12h/12h光照(恰好与O分株相反),经过7d的差异光周期处理后进行72h全光照稳定培养,并于全光照条件下在48h内连续测定各分株叶片超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)的活性以及丙二醛(MDA)的含量,探讨野牛草叶片酶促活性氧清除系统对差异光周期的响应特征。结果表明,差异光周期处理1周后,全光照条件下,断开状态的野牛草克隆分株O和Y间叶片中SOD、POD、CAT、APX活性以及MDA含量在24h内基本呈现相反的变化趋势,而野牛草相连克隆分株O和Y间叶片中以上指标在24h内呈现趋于一致的变化规律。研究发现,野牛草酶促活性氧清除系统活性在一天内呈现节律性表达模式,且差异光周期处理下的野牛草相连克隆分株的活性氧清除系统的活性的节律性变化趋于同步。  相似文献   

8.
In controlled-environment studies with debudded Xanthium plants,appreciable changes in stomatal activity and attendant ratesof transpiration were found to be associated with photoperiodicinduction. Leaves of plants kept on a 10-h inductive photoperiodafter removal of the apical and axillary buds grew at ratescomparable to those of similarly debudded plants kept on a 10-h-interruptednon-inductive photoperiod (consisting of an 8-h photoperiodand a 2-h interruption of the dark period). There was a large effect of leaf age on stomatal behaviour:the minimum stomatal resistance of leaves of non-induced plantsdecreased from about 5 s cm–1 when the leaf was 25 percent of its final size to 1.6 s cm–1 when almost fullyexpanded. Thereafter, it slowly increased with time. Superimposedon this age response was a marked effect of photoperiodic induction.The stomata on induced leaves opened more widely than thoseon non-induced leaves, the response being greatest with theleaves which were youngest at the time induction commenced.However, this ‘opening’ tendency was maintainedfor only a few weeks; thereafter, the stomata failed to openas widely. This later ‘closing’ tendency of stomataon leaves of induced plants progressed rapidly and in a basipetalsequence and presaged a necrotic form of leaf senescence whichdeveloped in the same sequence. The closing tendency on leavesof non-induced plants progressed slowly in an acropetal direction;leaves senesced in the same sequence with the familiar yellowingsymptoms. It is suggested that flower induction sets in train a sequenceof events which influence stomatal movement (and other processes)and inevitably leads to the death of the induced axis. Transpiration rates calculated from measurements of the physicalenvironments and stomatal resistances agreed well with thosemeasured.  相似文献   

9.
Utilization of sucrose and mannitol, the major forms of translocatable assimilate in celery ( Apium graveolens L. cv. Giant Pascal), was investigated in intact plants, excised leaves and leaf discs by estimating the soluble carbohydrate pools, starch levels and oxidation of [14C]-sucrose or mannitol in the light and after extended dark treatments. In detached mature fully-expanded leaves, mannitol pools remained constant, while sucrose decreased during a 48 h dark treatment. In attached leaves on plants trimmed to a single compound leaf, however, mannitol levels decreased after a dark treatment. In leaf discs floated on bathing solutions containing [14C]-sucrose or [14C]-mannitol, oxidation of mannitol was restricted to young leaf tissues, whereas sucrose was metabolized to CO2 regardless of leaf age. Uptake of labelled mannitol, however, was greater than that of sucrose in the light in leaves of every age. Although both mannitol and sucrose are translocated out of leaf tissues, leaf age differences indicate that, unlike sucrose, mannitol utilization is restricted to active sink tissues. The results suggest different roles for mannitol and sucrose with mannitol representing a more rigorously sequestered transport carbohydrate.  相似文献   

10.
Stomatal diffusion resistance in primary leaves of Phaseolus vulgaris L. which had been grown in light:dark cycles followed a marked circadian rhythm when the plants were transferred to continuous darkness. Reentrainment of the rhythm required more than one inductive change in photoperiod. The phasing of the rhythm of dark stomatal opening was contolled primarily by the light-on (dawn) signal, whereas the rhythm of dark closure was related to the light-off (dusk) signal. The evidence points to a dual control of the circadian clock in which a product of photosynthesis plays a major role. No evidence for phytochrome involvement in the phasing of the rhythm was found. An influence of phytochrome on the amplitude of the stomatal rhythm was observed in which removal of phytochrome-far-red absorbing form caused rapid damping.  相似文献   

11.
Leaf resistance (RL) of Kalanchoe blossfeldiana to water vapor transfer was determined with a resistance hygrometer. The diurnal leaf-resistance change followed a normal pattern (i.e., low in light and higher in dark) when plants were pretreated with cool thermoperiods or with thermoperiods having little diurnal temperature fluctuation. Large diurnal temperature fluctuations (30-18, 26-15 C) resulted in apparent nocturnal stomatal opening. Nocturnal stomatal opening was more apparent than real since leaf-resistance measurements indicated day stomatal closing rather than complete night opening. Low nocturnal leaf resistances ( < 10 sec/cm) were not measured in the dark; however, resistances tended to decrease toward the end of the dark period indicating some degree of nocturnal stomatal opening. Leaf resistances were generally higher than those reported for nonsucculent plants. The data suggested that gaseous diffusion (Q) into or out of the leaves of K. blossfeldiana would be adequately described by an equation of the form, Q = D Δ e RL−1. There was little or no indication that physiological long days (15 min of 660 mμ light in the middle of a 16-hr dark period), which prevented flowering and reduced organic acid accumulation, significantly affected leaf resistance. It was concluded that the photoperiod response effects of dark CO2 fixation were probably not due to leaf-resistance changes and, therefore, not due to stomatal aperture changes.  相似文献   

12.
青杨雌雄叶片气孔分布及气体交换的异质性差异   总被引:3,自引:0,他引:3  
利用网格和二维成图的方法对青杨雌雄叶片各区域的气孔分布及气体交换特性进行了测定.结果表明:1)除气孔密度(SD)外,雌雄植株在气孔长度(SL)、宽度(SW)和比值(SR)方面具有显著差异(P=0.000,P=0.000和P=0.002).雌株的SL和SW分别比雄株的高51.86%和67.06%,而SR则比雄株的低11.46%.从雌株和雄株的叶面分布来看,SD均为叶中>叶尖>叶基,SL均为叶尖>叶中>叶基,SW的最小值同在叶基部,但最大值分别在叶中和叶尖部.雌株的SR表现为叶基>叶尖>叶中,雄株却正好相反.2)在净光合速率(Pn)上雌株明显低于雄株.雌株的Pn叶基最低(Pn值介于2.00~3.00?μmol m-2 s-1),叶尖最高(Pn值介于8.00~9.00?μmol m-2 s-1),总体上表现出沿叶基到叶尖逐渐增大的趋势.雄株的Pn在叶面的分布也有差异,但总体规律不明显.3)从叶面各区间的气体交换来看,雌株的蒸腾速率(Tr)和气孔导度(Gs)变化不大,雄株的Tr和Gs呈现叶尖和叶中部高于叶基部的明显趋势.雌株的胞间CO2浓度(Ci)为叶基>叶中>叶尖,气孔限制值(Ls)与此相反.而雄株的Ci在叶面的变化较大,Ls呈现沿叶尖至叶基方向逐步上升的趋势.上述结果表明,青杨雌雄叶片在气孔分布及气体交换特性上不仅存在显著的性别差异,而且具有明显的叶面区域异质性.  相似文献   

13.
研究了西双版纳热带雨林2种喜光树种中平树(Macaranga denticulata)、倒樱木(Pnravallaris macrophylla)和2种耐荫树种云南肉豆蔻(Myristica yunnanensis)、金丝李(Garcinia paucinervis)幼苗叶片光合和形态解剖特征对3种不同生长光强(5%、25%和50%相对光强)的适应。研究结果表明,与强光下相比,弱光下生长的4种植物最大净光合速率、光饱和点、光补偿点、暗呼吸速率、叶绿素a/b、叶片和栅栏组织厚度、气孔密度和比叶重都降低,而海绵组织/栅栏组织和叶绿素含量升高。在相同光强下,与2种耐荫树种相比,2种喜光树种有较大的最大净光合速率、暗呼吸速率、气孔密度和较低的叶绿素含量。在不同光强下,4种植物均表现出了对光适应有利的生理和形态解剖可塑性,而喜光树种比耐荫树种有较大的生理和形态可塑性,表明喜光树种具有比耐荫树种对强光有更强的适应能力。4种植物的生理指标的可塑性均大于叶片解剖结构的可塑性。  相似文献   

14.
Plantlets of Alocasia amazonica regenerated under a photon flux density (PFD) of 15 or 30 μmol m−2 s−1 showed better growth and development than those grown under higher PFDs. While chlorophyll a and chlorophyll b decreased, the number of stomata increased with increasing PFD. Photoperiods also affected plantlet growth and stomatal development. Highest growth was observed for the short photoperiod (8/16 h) and for equinoctial (12/12 h) light and dark periods. Very few stomata developed in the leaves of plantlets grown under a short photoperiod (8/16 h) and the number of stomata increased with increasing light period. In conclusion, both light intensity and photoperiod independently affect growth of A. amazonica and development of stomata, depending on the intensity and duration of light treatment.  相似文献   

15.
Detached seedling leaf segments of five spring barley genotypes were inoculated with an isolate of barley mildew to which they possessed different levels of resistance. Segments of each host genotype were then incubated under either continuous light or treatments with 2, 4, 8 or 16 h darkness per 24 h cycle. Macroscopic observation showed that the latent period of infection was reduced slightly in treatments with at least 4 h darkness/24 h. Yellowing of detached segments occurred fastest under continuous light and slowest under a 16 h dark/8 h light cycle. Microscope observation of segments fixed 4·5 days after inoculation showed that as the length of the dark period increased, so the number of haustoria formed per colony also increased. This increase in haustorial production appeared to be associated with an accentuation in the synchrony of production of the secondary and tertiary haustorial generations. Varietal differences in susceptibility were also more marked in segments incubated under short days. It is concluded that under the conditions of temperature and light intensity used, a 16 h dark/8 h light system is most desirable for quantifying mildew resistance because it allows confident identification of distinct haustorial generations, accentuates differences in varietal susceptibility and delays chlorophyll degradation in detached barley leaves infected with mildew.  相似文献   

16.
The relation between leaf age and the induction of nitrate reductase activity by continuous and intermittent light was studied with barley seedlings (Hordeum vulgare L. cv. Club Mariout). In general, nitrate reductase activity declined as the period of growth in darkness was extended beyond 5 days. Maximum activity was found near the leaf tip while activity was lowest in the morphologically youngest tissue near the base of the lamina. Increased activity was observed after continuous illumination of dark-grown seedlings for 24 hours. The increase in activity in response to light was greatly reduced when the dark pretreatment period was extended beyond 8 days. The amount of nitrate reductase activity present in the different sections of the leaf was closely related to the amount of polyribosomes present. The pattern of chlorophyll accumulation closely parallelled that of increases in nitrate reductase activity. The initial lag in the induction of nitrate reductase activity was removed by a 10-minute light treatment 6 hours before placing dark-grown barley seedlings in light. The enzyme was also induced under flashing light with various dark intervals. These induction curves closely resembled those of chlorophyll accumulation under the same conditions. The development of photosynthetic CO2 fixation follows the same induction pattern in this system. Our results suggest that photosynthetic products may be required for the induction of significant levels of nitrate reductase activity in leaves of dark-grown seedlings, although other light effects may not be discounted.  相似文献   

17.
对生长在强光环境和弱光环境小蜡叶片的气孔参数测定发现:气孔导度和气孔开度在4个取样部位存在异质性分布.气孔导度和气孔开度经回归分析呈线性、指数或多项式分布.统计分析表明:强光下的叶片气孔导度和气孔开度的相关性明显高于弱光环境叶片的数值.无论强光环境还是弱光环境下的叶片,在取样部位编号为1和3,其气孔导度和气孔开度均存在显著的线性关系.弱光环境下叶片的气孔密度要远低于强光环境下的叶片.强光环境下叶片对变化环境的敏感性要大于弱光环境下的叶片,这可能与强光环境叶片具有较高的气孔密度有关.  相似文献   

18.
19.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

20.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号