首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cloning has revealed the primary structure of a number of G-protein-linked receptors. The organization and topography of these proteins predicted to have seven hydrophobic membrane-spanning domains, in contrast, have not been established. Antibodies were prepared against 11 peptides corresponding to each of the hydrophilic sequences of the hamster beta 2-adrenergic receptor. Each of the anti-peptide antibodies displayed immunoreactivity for its synthetic peptide antigen and beta 2-adrenergic receptor (Mr 65,000) on blots of cell membranes and of purified receptor. All but three anti-peptide antisera also displayed immunoreactivity toward human placental and rat fat cell beta 1-adrenergic receptors, reflecting the level of sequence identity that exists between the two subtypes, Chinese hamster ovary cells stably transfected with an expression vector harboring the cDNA encoding the hamster beta 2-adrenergic receptor provided a cell type with 2 million receptors/cell, suitable for in situ localization of the sequences used as antigens. Indirect immunofluorescence of intact and permeabilized cells performed with these site-directed anti-peptide antibodies permitted the assignment of the general topography of each of the hydrophilic sequences of this G-protein-linked receptor. The results support the predictive value of hydropathy analysis for one class of membrane proteins with multiple transmembrane-spanning domains.  相似文献   

2.
A serum-albumin-alprenolol conjugate was used to isolate beta-adrenergic receptors from the human A431 cell lysates. Three monoclonal antibodies were obtained from BALB/c mice immunized with these receptors. These antibodies: BRK-1, BRK-2, BRK-3, were respectively of the IgM, IgG2a and IgG3 classes. All three antibodies recognized photoaffinity-labelled receptors, immunoprecipitated ligand-binding activity and identified the 65-kDa and 55-kDa polypeptides corresponding to the beta 2-adrenergic receptors of A431 cells. BRK-2 and BRK-3 recognized both beta 1 and beta 2-adrenergic receptors of several mammalian cells. All three antibodies visualized, by immunofluorescence, the beta 2-adrenergic receptors at the surface of A431 cells. The monoclonal antibodies are directed against the protein portion of the beta-adrenergic receptors since partial or complete removal of the carbohydrate moieties by treatment with endoglycosidase such as endo-F (endo-beta-N-acetylglucosaminidase F) and periodate oxidation did not affect the immunoreactivity. These antibodies will be of value to immunopurify the beta-adrenergic receptors.  相似文献   

3.
Antibodies against the C-terminus of the beta1-adrenergic receptor were used for staining cultured astrocytes from the rat cerebral cortex. Immunoreactivity was found to be localized exclusively to an intracellular organelle structure similar to the Golgi complex, with no staining of the plasma membrane. The astrocytes stained positive with BODIPY CGP 12177, a FITC-conjugated beta-adrenergic receptor agonist, and this staining was blocked by the beta1-adrenergic antagonist atenolol, indicating that these receptors are expressed on the surface of the astrocytes. The presence of functional plasma membrane beta1-adrenergic receptors was further verified using microspectrofluorometry for measurements of intracellular calcium changes upon beta-adrenergic agonist stimulation. Intracellular immunoreactivity confined to the organelles was also found in astrocytes from mixed astroglial-neuronal cultures. In contrast, the neurons in these cultures showed a strong labeling of the cell bodies by the beta1-adrenergic receptor antibodies. Thus, the beta1-adrenergic receptor antibody, which stains the cell bodies of the neurons, recognizes the astroglial receptors only intracellularly, although functional beta1-adrenergic receptors are present on the astroglial surface. Taken together, these data suggest that the beta1-adrenergic receptors observed intracellularly might be processed on their passage to the surface to a modified form of the final plasma membrane receptor, which is not recognized by the antibodies.  相似文献   

4.
Most antibodies known to interact with beta-adrenergic receptors do not exhibit subtype selectivity, nor do they provide quantitative immunoprecipitation. A monoclonal antibody, G27.1 raised against a synthetic peptide corresponding to the C-terminus of the beta 2-adrenergic receptor of hamster, is selective for the beta 2 subtype. G27.1 provides nearly quantitative immunoprecipitation of the beta 2-adrenergic receptor from hamster lung that has been photoaffinity-labeled and solubilized with sodium dodecyl sulfate. Immunoprecipitation is completely blocked by nanomolar concentrations of the immunizing peptide. This antibody interacts with beta 2-adrenergic receptors from three rodent species, but not with those from humans. When C6 glioma cells, which contain both beta 1- and beta 2-adrenergic receptors, are photoaffinity-labeled in the absence or presence of subtype-selective antagonists, subtype-selective photoaffinity-labeling results. G27.1 can immunoprecipitate beta 2-, but not beta 1-, adrenergic receptors from these cells. Similar results were obtained following subtype-selective photoaffinity-labeling of membranes from rat cerebellum and cerebral cortex. The beta-adrenergic receptors from C6 glioma cells and rat cerebral cortex exist as a mixture of two molecular weight species. These species differ in glycosylation, as shown by endoglycosidase F digestion of crude and immunoprecipitated receptors.  相似文献   

5.
Immobilized catecholamines have played an important role in the localization of alpha- and beta-adrenergic receptors to the plasma membrane of effector cells, and in elucidating mechanisms of beta receptor activation of cardiac muscle. An extension of immobilized drug and affinity chromatography procedures has been developed by utilizing receptor-specific monoclonal antibodies. Structurally different beta 1- and beta 2-adrenergic receptors have been purified with a single monoclonal antibody affinity column, where the antibody is specific for an epitope in the ligand-binding site of both beta 1 and beta 2 receptors. Specificity was increased by elution of receptors from the monoclonal antibody affinity columns with low concentrations of beta-receptor antagonists. These studies indicate that the turkey erythrocyte beta 1-adrenergic receptor is most likely a monomer with a molecular weight of 65,000-70,000. beta 2-Adrenergic receptors have a primary subunit of 55,000-58,000 daltons, with the intact receptor in membranes having a molecular weight of 109,000, which suggests that the beta 2-adrenergic receptor is most likely a dimer of either two identical subunits or a binding subunit and an unidentified second subunit.  相似文献   

6.
Agonist-regulated redistribution of human beta 2-adrenergic receptors was examined in 293 cells. A specific antiserum recognizing the carboxyl-terminal hydrophilic domain of the receptor was developed, characterized, and used for immunocytochemical localization of receptors in fixed cells by conventional fluorescence and confocal fluorescence microscopy. The beta-adrenergic agonist isoproterenol induced redistribution of receptors from the surface of cells into small (less than 1 micron diameter) punctuate accumulations which were detected in cells within 2 min of agonist addition. The time course of receptor redistribution paralleled that of receptor sequestration measured by ligand binding, and receptor redistribution was reversible in the presence of the beta-adrenergic antagonist alprenolol. Optical sections imaged through cells by confocal microscopy localized receptor accumulations within the cytoplasm. To address the question of receptor internalization further, a mutant receptor possessing an engineered antigenic epitope in the amino-terminal hydrophilic domain was constructed, transfected into cells, and localized using both a monoclonal antibody recognizing the epitope tag (receptor ectodomain) and an antiserum recognizing the carboxyl terminus (receptor endodomain). In untreated cells most receptor antigen was detected at the cell surface, as assessed by accessibility to ectodomain antibodies in unpermeabilized specimens. In isoproterenol-treated cells, however, little receptor antigen was detected at the cell surface. Punctate receptor accumulations present in isoproterenol-treated cells were labeled by antibodies only following permeabilization of cells, as expected if these receptor accumulations were intracellular. Finally, internalized beta-adrenergic receptors colocalized with transferrin receptors, which are markers of endosomal membranes. These data provide several lines of evidence establishing that beta-adrenergic receptors undergo ligand-regulated internalization, they suggest that internalized receptors may be recycled back to the cell surface, and they provide the first direct indication that these processes involve the same endosomal membrane system passaged by constitutively recycling receptors.  相似文献   

7.
Antibodies directed against the second extracellular loop of G protein-coupled receptors were shown to possess functional activities. Using a functional monoclonal antibody against the human beta2-adrenergic receptor, a scFv fragment with high affinity for the target epitope was constructed and produced. The fragment recognized the beta2-adrenergic receptors on A431 cells, blocked cAMP accumulation induced by the beta2-agonist salbutamol, and decreased basal cAMP accumulation in the same cells. Their in vitro activity was tested on neonatal rat cardiomyocytes. The antibody fragments blocked the chronotropic activity induced by the beta2-agonist clenbuterol. They also decreased the in vivo heart beating frequency of mice pretreated with bisoprolol (a beta1-adrenergic receptor antagonist) for 4 min after injection. The immunological approach presented here may serve as a strategy for the synthesis of a new class of allosteric modulators for G protein-coupled receptors.  相似文献   

8.
Insulin activates a complex set of intracellular responses, including the activation of mitogen-activated protein kinases Erk1,2. The counterregulatory actions of insulin on catecholamine action are well known and include phosphorylation of the beta(2)-adrenergic receptor on Tyr(350), Tyr(354), and Tyr(364) in the C-terminal cytoplasmic domain, as well as enhanced sequestration of the beta(2)-adrenergic receptor. Both beta-adrenergic agonists and insulin provoke sequestration of beta(2)-adrenergic receptors in a synergistic manner. In the current work, cross-talk between insulin action and beta(2)-adrenergic receptors revealed that insulin activation of Erk1,2 was amplified via beta(2)-adrenergic receptors. In Chinese hamster ovary cells, expression of beta(2)-adrenergic receptors enhanced 5-10-fold the activation of Erk1,2 by insulin and prolonged the activation, the greatest enhancement occurring at 5 min post-insulin. The potentiation of insulin signaling on Erk1,2 was proportional to the level of expression of beta(2)-adrenergic receptor. The potentiation of insulin signaling requires the integrity of Tyr(350) of the beta(2)-adrenergic receptor, a residue phosphorylated in response to insulin. beta(2)-adrenergic receptors with a Y350F mutation failed to potentiate insulin activation of Erk1,2. Expression of the C-terminal domain of the beta(2)-adrenergic receptor (Pro(323)-Leu(418)) in cells expressing the intact beta(2)-adrenergic receptor acts as a dominant negative, blocking the potentiation of insulin activation of Erk1,2 via the beta(2)-adrenergic receptor. Blockade of beta(2)-adrenergic receptor sequestration does not alter the ability of the beta(2)-adrenergic receptor to potentiate insulin action on Erk1,2. We propose a new paradigm in which a G-protein-linked receptor, such as the beta(2)-adrenergic receptor, itself acts as a receptor-based scaffold via its binding site for Src homology 2 domains, facilitating signaling of the mitogen-activated protein kinase pathway by insulin.  相似文献   

9.
Summary We developed site-directed rabbit antisera against synthetic peptides selected from the deduced amino acid sequence of the hamster lung 2-adrenergic receptor (amino acids 16–31 and 174–189, respectively). All antisera directed against peptide 1 (four of four rabbits) as well as two antisera directed against peptide 2 (two of four rabbits) recognized the purified 2-adrenergic receptor in immunoblot conditions when used at a dilution of 1500. Antisera directed against peptide 1 as well as peptide 2 were able to immunoprecipitate iodinated as well as125I-cyanopindolol tabeled 2-adrenergic receptor. This last result implies that the recognized epitopes do not contain the125I-cyanopindolol binding domain of the 2-adrenergic receptor. Immunoblot experiments performed on membrane fractions from hamster lung tissue showed that immunoreactive bands at 64,000, 57,000, 47,000, 44,000 and 38,000 daltons were specifically detected. When purified 2-adrenergic receptor was iodinated and submitted to glycolytic and/or tryptic treatments, species with similar molecular weights could be recovered. Then, the immunoreactive bands probably correspond to native 2-adrenergic receptor and to degradative or nonglycosylated species of this molecule. The antisera were also able to detect immunoreactive molecules in murine and human cell lines, suggesting conservation of the probed sequences between these species. Enzymatic linked immunosorbent assay tests on intact cells and immunofluorescence studies confirmed that the amino-terminus and putative first extracellular loop are extracellularly located. Immunofluorescence studies on mouse brain primary cultures showed that cells expressing 2-adrenergic receptor-like molecules exhibited a neuronal phenotype.  相似文献   

10.
The localization of glucocorticoid and estrogen receptors alpha (GRalpha, ERalpha) and beta (GRbeta, ERbeta) in osteosarcoma SaOS-2 and hepatocarcinoma HepG2 cells was studied by immunofluorescence labelling and confocal laser scanning microscopy, as well as by subcellular fractionation and immunoblotting of the proteins of the fractions with respective antibodies. In HepG2 and SaOS-2 cells GRbeta and ERalpha were localized mainly in the nucleus, particularly concentrated in nuclear structures, which on the basis of their staining with antibody against C23-nucleolin, were characterized as nucleoli. A faint, diffuse GRbeta and ERalpha staining was also observed in the cytoplasm. GRalpha and ERbeta were specifically enriched at the site of cell mitochondria, which were visualized by labelling with the vital dye CMX. Immunoblotting experiments corroborated the immunofluorescence labelling distribution of glucocorticoid and estrogen receptor isoforms in the cell lines studied. These findings support the concept of a direct action of steroid/thyroid hormones on mitochondrial functions by way of their cognate receptors and also suggest a direct involvement of GRbeta and ERalpha in nucleolar-related processes in HepG2 and SaOS-2 cells.  相似文献   

11.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

12.
The effect of murine IgG hybridoma antibodies directed against leukocyte antigens on the Fc receptor function of human cells was studied. For this purpose, the specific binding of 125I-labeled monomeric human IgG1 to a macrophage-like cell-line (U-937) was quantitated before and after incubation in the presence of murine monoclonal hybridoma antibodies. Four monoclonal hybridoma antibodies (A1G3, 23D6, 4F2, and 3A 10), each of which binds to different antigens on the surface of U-937 cells, rapidly and potently inhibited the specific binding of labeled IgG1 to these cells. Inasmuch as inhibition was mediated only by IgG antibodies with an intact Fc fragment and antibody activity against surface antigens found on U-937, inhibition appears to have resulted from the formation of a three-component complex composed of antibody bound by its Fab portion to antigen and by its Fc fragment to a Fc receptor. Equilibrium binding studies performed on treated cells confirmed that reduced Fc receptor-mediated binding was due to a reduction in the number of available receptors. Binding studies employing double isotope labeling methods demonstrated that about 0.5 to 1.0 Fc receptor was blocked for each molecule of intact antibody bound to a U-937 cell. Using several techniques, it was shown that most of the monoclonal antibody bound to cells and the Fc receptors blocked by antibody remained on the cell surface despite incubation at 37 degrees C for 3 hr. Thus, the loss of receptor function observed in these experiments was almost exclusively due to reversible receptor blockade rather than receptor internalization or degradation. The antibodies identified in these studies also markedly inhibited Fc receptors on one other human cell line (HL-60) as well as those on normal human peripheral blood monocytes.  相似文献   

13.
14.
We have previously reported the production of monoclonal antibodies directed against phosphotyrosine, which is the modification induced by many oncogene products and growth factor receptors. One of these antiphosphotyrosine antibodies (py20) was used in affinity chromatography to isolate phosphotyrosine (PY)-containing proteins from Rous sarcoma virus-transformed chick embryo fibroblasts (RSV-CEFs). Mice were immunized with these PY-proteins for the production of monoclonal antibodies to individual substrates. Fifteen antibodies were generated in this way to antigens with molecular masses of 215, 76, 60, and 22 kD. Antibodies to individual substrates were used to analyze the subcellular location in normal and RSV-CEFs. Antibodies to the 215- and 76-kD antigen stained focal contacts when used in immunofluorescence microscopy while anti-22-kD protein antibodies resulted in punctate staining concentrated in the margins of cells and in parallel arrays. Both distributions were altered in transformed cells. When cells were extracted with nonionic detergent under conditions that stabilize the cytoskeleton, 50% of the 76-kD protein and greater than 90% of the 22-kD protein fractionated with the cytoskeleton. This study offers a new approach to both the identification of membrane skeletal proteins in fibroblasts and changes that occur upon transformation by an activated tyrosine kinase.  相似文献   

15.
To identify specific lung cells possessing functional beta-adrenergic receptors, we developed an immunoperoxidase-staining procedure capable of in situ localization of cells responding to beta-agonist stimulation with a rise in adenosine 3',5'-cyclic monophosphate (cAMP). Isoproterenol was instilled into the airways of excised intact guinea pig lungs for 5 min and resulted in a six to eightfold rise in cAMP. Immediately thereafter, the lungs were washed in and fixed with 10% buffered Formalin. Sections were then stained using immunoperoxidase techniques and monoclonal antibodies directed against cAMP. We found that isoproterenol-stimulated lungs had widespread increased staining for immunoreactive cAMP. The specific cells consistently demonstrating marked increases in staining were airway epithelial cells, airway smooth muscle cells, alveolar and parenchymal macrophages, and alveolar lining cells, including both type I and type II cells, and capillary endothelial cells. Of all tissues, the airway epithelium was the most intensely stained area for beta-agonist-induced immunoreactive cAMP. The techniques employed herein should make possible the in situ localization of cells responding to any stimuli capable of increasing cAMP, thereby allowing the specific identification of cells possessing functional adenylate cyclase-linked receptors.  相似文献   

16.
N Segev  J Mulholland  D Botstein 《Cell》1988,52(6):915-924
A yeast GTP-binding protein, the YPT1 gene product, has been found to function early in the secretion pathway. The ypt1-1 mutation causes a phenotype reminiscent of early secretion-defective mutants, including accumulation of membranes and vesicles as well as a partial defect in secretion and incomplete glycosylation of invertase. Immunofluorescence localization studies using affinity-purified antibody directed against the YPT1 protein showed punctate staining of the cytoplasm of growing yeast cells and very intense staining of small buds, where membrane growth and secretion are most active. The punctate cytoplasmic staining is changed in a mutant (sec7) under conditions that cause aberrant Golgi structures to accumulate. The pattern of immunofluorescence obtained when mouse cells were stained with the antibody coincided closely with the pattern observed with wheat germ agglutinin, suggesting that a mammalian counterpart of the yeast YPT1 protein is located in the Golgi apparatus. These results are interpreted as suggesting that GTP-binding proteins may act to direct intracellular vesicle traffic.  相似文献   

17.
To produce anti-idiotypic antibodies against receptors for the neurohypophyseal hormone vasopressin, an anti-vasopressin monoclonal antibody with a ligand specificity similar to that of vasopressin receptors was employed for immunization. Three anti-idiotypic monoclonal antibodies were obtained which induced, like vasopressin, plasminogen activator production in the renal epithelial cell line LLC-PK1 (expressing V2-receptors). Induction of plasminogen activator synthesis by the anti-idiotypic antibodies could be inhibited by coincubation with a vasopressin antagonist. In a fashion similar to that of vasopressin itself, the anti-idiotypic antibodies induced receptor down-regulation. The anti-idiotypic antibodies were employed to visualize vasopressin receptors on LLC-PK1 and A7r5 (V1-receptor-expressing) smooth muscle cells by immunofluorescence. Antibody-mediated fluorescence was not observed in receptor-deficient mutant cell lines or vasopressin-receptor-down-regulated cells. Furthermore, these antibodies were used for immunohistochemical localization of vasopressin receptors in rat and bovine kidney preparations. In accordance with earlier physiological and biochemical observations, vasopressin receptors were detected predominantly in collecting ducts in cortex and medulla. On the cellular level, a differential staining pattern was observed.  相似文献   

18.
This paper describes studies on the migratory behavior of epidermal growth factor (EGF) receptor kinase using antibodies that are specific for either the kinase domain or the extracellular domain of the receptor. Antiserum was raised to a 42,000-D subfragment of EGF receptor, which was shown earlier to carry the kinase catalytic site but not the EGF-binding site. Another antiserum was raised to the pure intact 170,000-D EGF receptor. The specificities of these antibodies were established by immunoprecipitation and immunoblotting experiments. The domain specificity was examined by indirect immunofluorescent staining of fixed cells. The anti-42-kD peptide antibody could bind specifically to EGF receptors of both human and murine origin and was found to be directed to the cytoplasmic part of the molecule. It did not bind to EGF receptor-negative cells, which contained other types of tyrosine kinases. The antibodies raised against the intact receptor recognized only EGF receptor-specific epitopes and were directed to the extracellular part of the molecule. The anti-receptor antibodies described above were used to visualize the cyclic locomotory behavior of EGF receptor kinase under various conditions of EGF stimulation and withdrawal. The receptor was examined in fixed and permeabilized cells by indirect immunofluorescent staining. The results demonstrate the following: (a) the receptor kinase domain migrates to the perinuclear region upon challenge with EGF; (b) both extracellular and cytoplasmic domains of the receptor are involved in migration as a unit; (c) withdrawal of EGF results in rapid recycling of the perinuclear receptors to the plasma membrane; (d) this return to the cell surface is inhibited by methylamine, chloroquine, and monensin; and (e) neither the internal migration nor the recycling process is blocked by inhibitors of protein biosynthesis.  相似文献   

19.
Poly(A)+-selected RNA prepared from cells or tissues that express a homogeneous population of either beta 1- or beta 2-adrenergic receptors was isolated and then microinjected into Xenopus laevis oocytes. Following microinjection, the expression of beta-adrenergic receptors was assessed by equilibrium radioligand binding analysis using the antagonist ligand [3H]dihydroalprenolol. The pharmacology of the newly- expressed beta-adrenergic receptors in oocyte membranes was the same as that of the original tissue used as a source of RNA. Hybridization of nick-translated cDNA of hamster beta 2-adrenergic receptor to poly(A)+-selected RNA from tissues containing beta 2-adrenergic receptors was to a mRNA species of 2.2 kilobases. In contrast, hybridization of the cDNA probe to poly(A)+-selected RNA from tissues containing beta 1-adrenergic receptors was to a mRNA species of 2.0 kilobases. A single-stranded fragment of hamster beta 2-adrenergic receptor cDNA corresponding to nucleotides 730-886 was isolated and uniformly radiolabeled. This region of the gene is predicted to encode for the entire second exofacial loop (L4-5), the entire fifth transmembrane-spanning region, and the first 5 amino acid residues of the third cytoplasmic loop (L5-6) of the beta 2-adrenergic receptor. Hybridization at 48 and 56 degrees C of poly(A)+-selected RNA prepared from sources that express either beta 1 or beta 2-adrenergic receptors to the antisense orientation strand of this region of the beta 2-adrenergic receptor cDNA was followed by S1 endonuclease digestion of nonhybridized sequences. At 48 degrees C, S1-resistant hybrids from both sources of RNA protected the probe from S1 endonuclease digestion. At 56 degrees C, however, only the RNA prepared from the source of beta 2-adrenergic receptors protected the probe from S1 endonuclease digestion. These results demonstrate that the mRNAs encoding for the structurally homologous beta 1- and beta 2-adrenergic receptors are distinct in the pharmacological specificity of their translation products and in their size and structure.  相似文献   

20.
Beta 1- and beta 2-adrenergic receptors, pharmacologically distinct proteins, have been reported to be structurally dissimilar. In the present study three techniques were employed to compare the nature of mammalian beta 1- and beta 2-adrenergic receptors. Antibodies against each of the receptor subtypes were raised separately. Polyclonal antisera against beta 1-receptors of rat fat cells were raised in mice, and antisera against beta 2-receptors of guinea pig lung were raised in rabbits. Receptors purified from rat fat cells (beta 1-), S49 mouse lymphoma cells (beta 2-), and rat liver (beta 2-) were probed with these antisera. Each anti-receptor antisera demonstrated the ability to immunoprecipitate purified receptors of both beta 1- and beta 2- subtypes. The mobility of beta-receptors subjected to polyacrylamide gel electrophoresis was probed using antireceptor antibodies and nitrocellulose blots of the gels. Fat cell beta 1-adrenergic receptors display Mr = 67,000 under reducing conditions and Mr = 54,000 under nonreducing conditions, as previously reported (Moxham, C. P., and Malbon, C. C. (1985) Biochemistry 24, 6072-6077). Both beta 1- and beta 2-receptors displayed this same shift in electrophoretic mobility observed in the presence as compared to the absence of disulfide bridge-reducing agents, as detected both by autoradiography of the radiolabeled receptors and by immunoblotting of native receptors. Finally, isoelectric focusing of purified radioiodinated beta 1- and beta 2-adrenergic receptors revealed identical isoelectric points. These data are the first to provide analyses of immunological, structural, and biochemical features of beta 1- and beta 2-subtypes in tandem and underscore the structural similarities that exist between these pharmacologically distinct receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号