首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Activities of several biotransformation enzymes were determined in male and female Sigmodon hispidus. Benzphetamine N-demethylase and glutathione S-transferases toward 1-chloro-2,4-dinitrobenzene and sulfobromophthalein were higher in male Sigmodon hispidus than the female animals. 2. The study also determined the effect of microsomal enzyme inducing agents on hepatic biotransformation in male Sigmodon hispidus. 3. Cytochrome P-450 concentration was similar in cotton and Sprague-Dawley rats, and was increased after phenobarbital, pregnenolone-16 alpha-carbonitrile, or 3-methylcholanthrene treatment. 4. Benzphetamine N-demethylase was 4-fold higher in Sigmodon hispidus and was induced by 75-100% after phenobarbital. 5. UDP-Glucuronosyltransferase toward estrone, 1-naphthol, diethylstilbestrol and testosterone was 2- to 4-fold higher in cotton rats and was not altered by treatment with the inducing agents. 6. Conjugation of 1-chloro-2,4-dinitrobenzene, ethacrynic acid and sulfobromophthalein with glutathione was similar in both rodent species and was not inducible. 7. Sulfation of 2-naphthol was 15-30% of that in Sprague-Dawley rats and was not increased by inducer administration.  相似文献   

2.
A protein immunochemically related to P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, was detected in rat liver microsomes. The content of the immunoreactive protein in rat liver microsomes was increased by treatments with phenobarbital, pregnenolone 16 alpha-carbonitrile (PCN), erythromycin, erythromycin estolate, and oleandomycin but not with 3-methylcholanthrene, imidazole, ethanol, isosafrole, josamycin, midecamycin, or miocamycin. The activity of erythromycin N-demethylase correlated with the content of the immunoreactive protein in rat liver microsomes (r = 0.72). In addition, anti-P-450 HFLa IgG inhibited erythromycin N-demethylase in liver microsomes from erythromycin- or oleandomycin-pretreated rats. Furthermore, the content of the immunoreactive protein highly correlated with that of P-450 PB-1, which is distinct from Waxman's terminology, and is one of the forms of PCN-inducible cytochrome P-450s (r = 0.95). From these results and the results reported so far, it seems possible that P-450 HFLa is one of the forms of cytochrome P-450 inducible by glucocorticoids.  相似文献   

3.
We administered triacetyloleandomycin (TAO) to rats and found that this macrolide antibiotic is the most efficacious inducer of liver microsomal cytochrome P-450 (P-450) examined to date. Liver microsomes prepared from TAO-treated rats contained greater than 5.0 nmol of P-450/mg of protein and a single induced protein as judged by analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein comigrated with P-450p, the major form of P-450 induced in liver microsomes of rats treated with pregnenolone-16 alpha-carbonitrile (PCN) or dexamethasone (DEX). On immunoblots of such gels developed with antibodies to P-450p, the TAO-induced protein reacted strongly as a single band. There was strict parallelism between the amount of immunoreactive P-450p in liver microsomes prepared from untreated rats or from rats treated with phenobarbital, TAO, DEX, or PCN, the ability of these microsomes to catalyze conversion of TAO to a metabolite which forms a spectral complex, and the ethylmorphine and erythromycin demethylase activities. Antibodies to P-450p specifically blocked microsomal TAO metabolite complex formation and ethylmorphine and erythromycin demethylase activities. Moreover, anti-P-450p antibodies completely immunoprecipitated solubilized TAO metabolite complexes prepared by detergent treatment of liver microsomes obtained from TAO-treated rats. Finally, we found that the major form of P-450 isolated from liver microsomes of TAO-treated rats and purified to homogeneity was indistinguishable from purified P-450p as judged by molecular weights, spectral characteristics, enzymatic activities, ability to bind TAO, peptide maps, and amino-terminal amino acid sequences. We concluded that, in addition to glucocorticoids, macrolide antibiotics are specific inducers of P-450p.  相似文献   

4.
Compounds that are known to increase the hepatic microsomal cytochrome P-450 dependent monooxygenases were administered to adult female rats, alone or in combination, to determine whether their effects on certain substrate oxidations were additive. 3-Methylcholanthrene (3-MC) and pregnenolone-16 alpha-carbonitrile (PCN), known to induce different forms of cytochrome P-450, when administered together increased benzo[a]pyrene oxidation to the same level as observed following 3-MC treatment alone. Phenobarbital (Pb) and PCN when administered concomitantly increased benzo[a]pyrene, amino-pyrine, and ethylmorphine metabolism to the same extent as seen following PCN administration alone. Both compounds are known to induce different forms of cytochrome P-450. Nonadditive effects were also observed with Pb and spironolactone, as well as with Pb and trans-stilbene oxide. Treatment of adult male rats with either PCN or 3-MC resulted in significantly smaller increases in benzo[a]pyrene oxidation than observed in adult female rats. These results suggest that oxidative metabolism in hepatic microsomes is not the sum of activities of a number of cytochrome P-450s, but may represent the activity of a single predominant hemeprotein. In addition, it appears that the oxidation of substrate by a particular cytochrome P-450, in intact microsomes, is greatly influenced by the presence of another form.  相似文献   

5.
1. Isolated periportal (PP) and perivenous (PV) hepatocytes from normal and inducer-treated rat livers were used to examine the following: intralobular localization of cytochrome P-450IA, P-450IIB, P-450IIE and P-450IIIA dependent monooxygenase activities and effects of phenobarbital (PB), beta-naphthoflavone (BNF) and pregnenolone-16 alpha-carbonitrile (PCN) on the zonal induction of these monooxygenases. 2. 7-Ethoxyresorufin O-deethylase (7EROD), 7-pentoxyresorufin O-dealkylase (7PROD) and N-nitrosodimethylamine N-demethylase (NAND) activities of PP hepatocytes were not significantly different from those of PV hepatocytes. 3. Ethylmorphine N-demethylase (EMND) activity was significantly higher in PV hepatocytes than in PP hepatocytes of normal rats. 4. EMND activity was induced by PCN and PB treatments. The response of EMND activity to PCN treatment was higher in PP hepatocytes than that in PV hepatocytes, and as a result the PV dominance disappeared following PCN treatment. 5. Extents of the response of this activity to PB treatment were similar in PP and PV hepatocytes, and PV dominance remained unchanged even after induction.  相似文献   

6.
Microsomal P450 monooxygenases contribute actively to the biotransformation of the antiglucocorticoid RU38486, an 11 beta-substituted nor-steroid. Pretreatment of adult rats by inducers of specific forms, belonging to different P450 subfamilies, affects the ability of liver microsomes to metabolize RU38486. Phenobarbital and pregnenolone 16 alpha-carbonitrile increase the metabolic activity of liver microsomes whereas methylcholanthrene decreases their capacity to oxidize the steroid. Thus P450 forms IIIA, IIB1,2 and IIC7 are good candidates to be involved in the degradation of this peculiar molecule. Our study has been completed by investigating whether RU38486 would influence the P450 spectrum. Whereas the treatment of rats with either a glucocorticoid (cortisol, dexamethasone) or an antiglucocorticoid (pregnenolone 16 alpha-carbonitrile) has been shown to induce the P450 activity by increasing the hepatic concentration of form IIIA, we observed a slight decrease of the P450 activity by treating the animals with RU38486. Moreover RU38486 was able to antagonize the P450 induction by the other steroids as well as it inhibits the synthesis of various liver enzymes induced by glucocorticoids (for instance tyrosine aminotransferase). These findings may be important for the therapeutic use of RU38486 since its inhibitory effect on P450 activity may be at the origin of drug interactions by modifying the endogenous hormonal status.  相似文献   

7.
Cytochromes P-450 and epoxide hydrolase in hamsters were studied by using two-dimensional gel electrophoresis of hepatic microsomes from untreated animals and those treated with phenobarbital, 3-methylcholanthrene, beta-naphthoflavone, trans-stilbene oxide, and pregnenolone-16 alpha-carbonitrile. Coelectrophoresis with corresponding microsomes from rats and in situ peptide mapping were used to identify resolved microsomal polypeptides as cytochromes P-450 or epoxide hydrolase. Two forms of hepatic microsomal epoxide hydrolase were shown to exist in hamsters; these evidenced extensive structural homology with the corresponding enzyme in rats and were induced by the same xenobiotics. At least eight inducible polypeptides in microsomes from hamsters were tentatively identified as cytochromes P-450. Two of these were electrophoretically identical and structurally related with previously characterized forms of the enzyme in rats. Homologues of several major cytochromes P-450 induced by pregnenolone-16 alpha-carbonitrile and/or phenobarbital in the rat were apparently not present in the hamster. In most cases, putative forms of inducible cytochrome P-450 in the hamster existed at significant levels in microsomes from untreated animals whereas in rats the levels of most inducible forms of the enzyme were low in control microsomes, being more strictly dependent on xenobiotic pretreatment. In contrast with epoxide hydrolase, the molecular complexity of hepatic cytochrome P-450 seems to be comparable for rats and hamsters, but the structure and control of these hemoproteins appear to have markedly diverged.  相似文献   

8.
The major form of microsomal cytochrome P-450 induced by trans-stilbene oxide in the liver of male Sprague-Dawley rats was purified and characterized, and compared with the isolated cytochrome P-450 B2 forms from phenobarbital- and 3-methylcholanthrene-pretreated animals. The apparent subunit molecular weight of the trans-stilbene oxide-induced cytochrome was found to be 53 000 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the absorbance maximum of the carbon monoxide complex of the ferrous cytochrome was 450 nm. Reconstitution of the N-demethylase activity towards three different substrates showed high and similar activities with the cytochrome P-450 B2 forms from trans-stilbene oxide or phenobarbital-treated rats, with one exception. Amino-acid analysis also showed a very high degree of similarity between these two forms. Upon proteinase treatment with three different proteinases the trans-stilbene oxide-induced cytochrome demonstrated in each case a peptide pattern identical to that obtained with the phenobarbital-induced B2 form. Furthermore, both forms are completely immunologically cross-reactive. We therefore conclude from these experiments that the liver microsomal P-450 B2 from trans-stilbene oxide and phenobarbital-treated rats are very closely related, if not identical.  相似文献   

9.
The effects of neonatally administered phenobarbital (PB) on adult rat hepatic microsomal metabolism of testosterone were examined in 60-, 90-, and 120-day-old animals. Phenobarbital-induced imprinting was evident at all ages; however, female rats appeared to be more susceptible to the neonatal effects of phenobarbital than did male rats. In 60-day-old female rats, increased testosterone 2α-hydroxylase activity was observed in microsomes from noninduced rats, whereas decreased testosterone oxidation at all positions except 2α and 15β was observed in microsomes from Aroclor 1254-induced rats. The decreased oxidation of testosterone at specific sites in response to Aroclor 1254 induction was quite dramatic, decreasing the activities to near or below control levels. By contrast, phenobarbital-treated 60-day-old males exhibited approximately a twofold increase in Aroclor 1254-induced 16α and 2α-hydroxylase activities. The pattern of changes in testosterone metabolism observed in phenobarbital-treated animals was different at both 90 and 120 days from that at 60 days. Only minor alterations in the oxidation of testosterone were observed in 90-day-old animals of either sex. In 120-day-old animals the greatest effects of neonatal phenobarbital exposure were on Aroclor 1254–induced 16β-hydroxylase activities. In induced female rats 16β-hydroxylase activity was again decreased to noninduced levels, while in induced male rats a fourfold increase in this activity was observed. These results demonstrate that neonatal exposure to phenobarbital can alter both constitutive and Aroclor 1254–induced testosterone metabolism in adult rats and that the effects of neonatal phenobarbital exposure are age and sex differentiated.  相似文献   

10.
Two cholesterol 7 alpha-hydroxylase isozymes were purified from liver microsomes of cholestyramine-treated female rats by using anion exchange high performance liquid chromatography. These two cytochrome P-450 isozymes were similar in electrophoretic mobility, immunocross-reactivity, and Vmax but differed in Km for cholesterol, turnover number, and charges. Antibody against the major isozyme was raised in rabbit. This antibody specifically inhibited microsomal cholesterol 7 alpha-hydroxylase activity. Immunoblot of microsomal polypeptides indicated that microsomal cholesterol 7 alpha-hydroxylase enzyme levels were increased in parallel with cholesterol 7 alpha-hydroxylase activity upon the treatment of rats with diet supplemented with cholestyramine. Both cholesterol 7 alpha-hydroxylase activity and enzyme levels were drastically reduced immediately after the removal of cholestyramine from the diet. Cholesterol 7 alpha-hydroxylase activity was also detected in the microsomes of kidney, heart, and lung in about 7-27% of the level found in the liver. 3-Methylcholanthrene treatment induced cholesterol 7 alpha-hydroxylase activity and enzyme level. In contrast, pregnenolone-16 alpha-carbonitrile or dexamethasone treatment greatly depressed enzyme and activity in rats. Cholesterol 7 alpha-hydroxylase enzyme level was 2-3-fold higher in liver microsomes of rats maintained under the reversed light cycle than under the normal light cycle. In genetically obese Zucker rats, cholesterol 7 alpha-hydroxylase activity and enzyme level did not respond to the change in the light cycle, however, were induced to the same levels as in the lean rats by cholestyramine treatment. This study provided the first direct evidence that the bile acid feedback regulation and circadian rhythm of microsomal cholesterol 7 alpha-hydroxylase activity involved the induction of cholesterol 7 alpha-hydroxylase enzyme level.  相似文献   

11.
12.
A new form of cytochrome P-450 was partially purified from hepatic microsomes of neonatally imprinted rats (adult male and adult male castrated at four weeks of age). This new form of cytochrome P-450 appears to have an apparent molecular weight of approximately 50,000 daltons as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It appears that this form of cytochrome P-450 is either absent or present in low concentrations in cytochrome P-450 preparations isolated from neonatally nonimprinted rats (adult female and adult male castrated at birth). Reconstitution of testosterone hydroxylase and benzphetamine N-demethylase activities of this partially purified cytochrome P-450 revealed that the presence of testosterone 16α-hydroxylase activity, an imprintable microsomal enzyme, was in parallel with the imprinting status of the animals; a significantly higher activity was detected in the neonatally imprinted than that of the nonimprinted animals. This was in contrast to the nonimprintable benzphetamine N-demethylase, testosterone 7α-and 6β-hydroxylase activities which exhibited no correlation with the imprinting status of the animals. We have prepared antisera from rabbits using the partially purified cytochrome P-450 preparations from adult male rats as antigens. These antisera inhibited microsomal testosterone 16α- and 7α-hydroxylase activities in a concentration-dependent manner, without impairing 6β-hydroxylase activity. These data suggest that the partially purified cytochrome P-450 from adult male rats consists of both imprintable (16α-) and nonimprintable (7α-) testosterone hydroxylase activities. The antisera formed immunoprecipitant lines in the Ouchterlony double diffusion plates with partially purified cytochrome P-450 from both neonatally imprinted and nonimprinted adult rats. The immunoprecipitant lines, as stained by coomassie blue, suggest the homology of the cytochrome P-450 preparations from neonatally imprinted and nonimprinted rats. Immunoabsorption of the antisera against neonatally nonimprinted, partially purified cytochrome P-450 completely removed the immunoprecipitant lines without appreciably impairing the inhibitory effects of antisera on the microsomal testosterone 16α-and 7α-hydroxylase activities. In contrast, immunoabsorption of the antisera against partially purified cytochrome P-450 from adult male rats (imprinted) abolished completely both the immunoprecipitant lines and the inhibition on microsomal testosterone hydroxylation reaction (16α and 7α). The inhibitory actin of antisera on testosterone hydroxyulation was also abolished upon boiling the antisera at 100°C for 5 minutes. The biochemical and immunochemical data in this study suggest that the neonatally imprintable form or forms of hepatic microsomal cytochrome P-450 accounts for a small fraction of the bulk of total cytochrome P-450. However, the existence of this form of cytochrome P-450 is regulated by gonadal hormones during the neonatal period and accounts for the major imprintable sex difference in drug and steroid metabolism in adulthood.  相似文献   

13.
Treatment of intact and hypophysectomized female rats with pregnenolone-16 alpha-carbonitrile (PCN) resulted in a significant increase in hepatic aryl hydrocarbon hydroxylase (AHH) activity. However, the total cytochrome P-450 concentration, as measured by CO difference spectra, was increased to a greater extent in hypophysectomized rats than in intact rats. Total cytochrome P-450 was found to be 0.82 +/- 0.16 vs 2.43 +/- 0.31 nmoles/mg protein for control and PCN-treated hypophysectomized rats, respectively, and 0.68 +/- 0.23 vs 1.28 +/- 0.05 nmoles/mg protein for control and PCN-treated intact rats respectively. The concentration of metyrapone complex in microsomes from intact control and PCN-treated rats was found to be 0.4 +/- 0.11 vs 1.88 +/- 0.23 M respectively. Treatment of hypophysectomized rats with PCN resulted in an approximate 10-fold increase in the concentration of the metyrapone complex (0.42 +/- 0.15 M for control and 4.46 +/- 0.44 M for PCN-treated). Microsomal NADPH and NADPH cytochrome c reductase activities were also altered by PCN-treatment. Aminopyrine demethylase activity was stimulated approximately three-fold by PCN treatment in both intact and hypophysectomized rats. Benzphetamine demethylase activity was not significantly affected by PCN treatment. The results of these studies suggest that the absence of the pituitary gland can markedly influence PCN induction of cytochrome P-450 in the liver in female rats. PCN also differentially affects microsomal mixed-function oxidase activities associated with drug and xenobiotic metabolism.  相似文献   

14.
The influence of age, sex, and hormonal status on the expression of eight rat hepatic cytochrome P-450 (P-450) isoenzymes was evaluated by both catalytic and immunochemical methods. The male specificity of P-450 2c(male)/UT-A, the major microsomal steroid 16 alpha-hydroxylase of uninduced rat liver [Waxman, D.J. (1984) J. Biol. Chem. 259, 15481-15490], was shown to reflect its greater than or equal to 30-fold induction at puberty in male but not in female rats. The female specificity of P-450 2d(female)/UT-I was shown to reflect its developmental induction in females. P-450 PB-2a/PCN-E was shown to mediate greater than or equal to 85% of microsomal steroid 6 beta-hydroxylase activity; the male specificity of this P-450 largely reflects its developmental suppression in female rats. Neonatal gonadectomy and hormonal replacement experiments established that neonatal androgen "imprints" or programs the male rat for developmental induction of P-450 2c(male)/UT-A, for maintenance of P-450 PB-2a/PCN-E, and for suppression of P-450 2d(female)/UT-I, all of which occur in male rats at puberty. By contrast, the expressed levels of P-450 isoenzymes PB-1/PB-C, 3/UT-F, PB-4/PB-B, ISF-G, and beta NF-B were mostly unaffected by the rats' age, sex, and hormonal status. Studies on the sex specificity of P-450 induction established that the response of these latter five isoenzymes to the P-450 inducers phenobarbital, beta-naphthoflavone, pregnenolone-16 alpha-carbonitrile, and isosafrole is qualitatively and quantitatively equivalent in females as in males.  相似文献   

15.
The effects of subacute treatment with cocaine on activities of cocaine N-demethylase, UDP-glucuronyltransferase (GT) toward 4-nitrophenol and phenolphthalein and sulfotransferase (ST) toward androsterone and 4-nitrophenol in livers from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were investigated. Hepatic metabolism of cocaine was different between the sexes (with males having higher N-demethylase activity) and the strains (with WKY rats having higher activity). The effects of subacute cocaine administration on the activity of cocaine N-demethylase were also sex- and strain-related. Whereas cocaine administration increased activity of hepatic N-demethylase in both female strains, it decreased activity in male WKY and had no effect on activity in male SHR. Sex and strain-related as well as cocaine-induced differences were also found in activities of hepatic GT toward 4-nitrophenol and phenolphthalein as well as in activity of hepatic ST towards andersterone and 4-nitrophenol. These results suggest that some of the individual variation in the effects of cocaine may be due to sex and genetic differences in the hepatic metabolism of cocaine and/or in sexually and/or/genetically-determined differences in how cocaine affects hepatic metabolism of other xenobiotics.  相似文献   

16.
We administered a series of steroid hormones to primary nonproliferating cultures of adult rat hepatocytes and found that dexamethasone and other glucocorticoids but not sex steroid hormones, mineralocorticoids, or derivatives of pregnenolone other than pregnenolone 16 alpha-carbonitrile (PCN) stimulated de novo synthesis of an immunoreactive protein, indistinguishable from the form of cytochrome P-450 (P450PCN) induced by PCN in rat liver. No difference were discerned among purified liver cytochromes from rats treated with dexamethasone, PCN or dexamethasone plus PCN, among proteolytic digests of these proteins, or among the immunoprecipitated cytochromes prepared from cultured hepatocytes treated with these steroids as judged by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate followed by immunoblot analysis. Of the steroids tested, dexamethasone proved to be the most efficacious inducer increasing the rate of synthesis of P450PCN from 0.05% of total cellular protein synthesis in incubated control cultures (measured as incorporation of [3H]leucine into immunoprecipitable P450PCN) to as much as 9.4% in cultures incubated for 5 days in medium containing dexamethasone (10(-5) M). As with traditional glucocorticoid-responsive liver functions, induction of immunoreactive P450PCN was dependent on the concentration of dexamethasone (10(-8) to 10(-5) M) and was promptly reversed upon withdrawal of the steroid. However, during the 24-h interval between 24 to 48 h of culture age the hepatocytes were refractory to either induction or de-induction of immunoreactive P450PCN even though continuous exposure of the cells to dexamethasone (including this interval) was mandatory for maximal induction of P450PCN at 120 h in culture. Unlike cultured rat hepatocytes, HTC hepatoma cultures failed to exhibit dexamethasone-responsive expression of immunoreactive P450PCN. We conclude that glucocorticoids and PCN constitute a specific "class" of synthetic and endogenous inducers of a single form of cytochrome P-450.  相似文献   

17.
The synthetic steroid, pregnenolone-16alpha-carbonitrile (PCN), activates hepatic metabolism and elimination of xenobiotics mediated by its interaction with the PXR, a nuclear receptor that binds PCN and such glucocorticoids as dexamethasone (Dex). We used mRNA differential display to define further the domain of genes under the control of PCN/PXR. We found 76 cDNA fragments representing mRNAs differentially expressed in the liver of rats treated with PCN or Dex. Sequence analysis of one of these revealed a PCN induced cDNA fragment as IF1, an inhibitor peptide of ATP synthase/ATPase complex. Northern blot analysis revealed that IF1 was detectable in untreated liver and was induced 2-3 fold following treatment with PCN. IF1 mRNA was not detected in lung, heart, kidney, or testes of control or PCN treated rats. We conclude that IF1 inhibitor peptide is a novel representative of an apparently large set of previously unrecognized genes coordinately controlled by the PCN/PXR system to maintain homeostasis during toxic stress.  相似文献   

18.
The aim of the present study was to investigate whether the mechanism by which pregnenolone-16 alpha-carbonitrile (PCN) protects rats from digitoxin toxicity was dependent on the induction of liver microsomal cytochrome P-450p and/or the UDP-glucuronosyltransferase active toward digitoxigenin monodigitoxoside (UDP-GT-dt1). Evidence is presented that suggests troleandomycin is a selective inhibitor of cytochrome P-450p in vivo, based on the pattern of inhibition observed when zoxazolamine paralysis time and hexobarbital sleeping time were measured in rats treated with different cytochrome P-450 inducers. A single dose of troleandomycin completely reversed the ability of PCN to protect rats from digitoxin toxicity, establishing the importance of cytochrome P-450p induction in the protective effect of PCN. The postpubertal decline in constitutive cytochrome P-450p levels in female but not male rats was paralleled by a female-specific, age-dependent decline in the rate of digitoxin sugar cleavage (i.e., digitoxosyl oxidation of digitoxin to 15'-dehydrodigitoxin and digitoxosyl cleavage to digitoxigenin bisdigitoxoside). This resulted in a marked sex difference in the rate of digitoxin sugar cleavage catalyzed by liver microsomes from mature rats (male/female approximately 6). However, no sex difference in digitoxin toxicity was observed in either immature or mature rats. In contrast to cytochrome P-450p, liver microsomal UDP-GT-dt1 activity increased dramatically with age in both male and female rats (mature/immature approximately 10). However, no age differences in digitoxin toxicity were observed in rats of either sex. The results indicate that cytochrome P-450p and UDP-GT-dt1 can be independently regulated in rat liver and that large changes in the constitutive levels of these microsomal enzymes have no effect on digitoxin toxicity. This suggests that the induction of cytochrome P-450p and UDP-GT-dt1 does not fully account for the mechanism by which PCN protects rats from digitoxin toxicity.  相似文献   

19.
Studies initiated to investigate the presence of cytochrome P4503A (CYP3A) isoenzymes in brain revealed constitutive mRNA and protein expression of CYP3A1 in rat brain. Western blotting studies showed that pretreatment with CYP3A inducer such as pregnenolone-16α -carbonitrile (PCN) significantly increased the cross reactivity comigrating with hepatic CYP3A1 and CYP3A2 in rat brain microsomes. RT-PCR studies have also shown increase in mRNA expression of CYP3A1 following pretreatment of rats with PCN. The ability of rat brain microsomes to catalyze the demethylation of erythromycin, known to be mediated by CYP3A isoenzymes in liver and significant increase in the activity of erythromycin demethylase (EMD) following pretreatment with dexamethasone or PCN have indicated that CYP3A isoenzymes expressed in brain are functionally active. Kinetic studies revealed that increase in the enzyme activity following pretreatment with PCN resulted in increase in the apparent affinity (Km) and Vmax of the reaction. Similarities in the inhibition of the constitutive and inducible brain and liver EMD activity following in vitro addition of ketoconazole, a inhibitor specific for CYP3A catalysed reactions and anti-CYP3A have further indicated that like in liver, CYP3A isoenzymes catalyse the activity of EMD in rat brain. Data also revealed regional differences in the activity of EMD in the brain. Relatively higher constitutive as well as inducible mRNA expression of CYP3A1 in hypothalamus and hippocampus, the brain regions responsive to steroid hormones have suggested that CYP3A isoenzymes may not only be involved in the process of detoxication mechanism but also in the metabolism of endogenous substrates in brain.  相似文献   

20.
It has been shown previously that liver microsomal steroid 5 alpha-reductase activity increases with age in female but not male rats, which coincides with a female-specific, age-dependent decline in the cytochrome P-450-dependent oxidation of testosterone to 1 beta-, 2 alpha-, 2 beta-, 6 alpha-, 6 beta-, 7 alpha-, 15 beta-, 16 alpha-, 16 beta-, and 18-hydroxytestosterone and androstenedione. To determine whether the increase in steroid 5 alpha-reductase activity is responsible for the decrease in testosterone oxidation, we have examined the effects of the steroid 5 alpha-reductase inhibitor, 4-MA (17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one), on the pathways of testosterone oxidation catalyzed by rat liver microsomes. We have also determined which hydroxytestosterone metabolites are substrates for steroid 5 alpha-reductase. At concentrations of 0.1 to 10 microM, 4-MA completely inhibited steroid 5 alpha-reductase activity without inhibiting the pathways of testosterone oxidation catalyzed by liver microsomes from rats of different age and sex, and from rats induced with phenobarbital or pregnenolone-16 alpha-carbonitrile. 4-MA (10 microM) had little or no effect on the oxidation of testosterone catalyzed by liver microsomes from mature male rats (which have low steroid 5 alpha-reductase activity). In contrast, the hydroxylated testosterone metabolites formed by liver microsomes from mature female rats (which have high steroid 5 alpha-reductase activity) accumulated to a much greater extent in the presence of 4-MA. Evidence is presented that 4-MA increases the accumulation of hydroxytestosterones by two mechanisms. First, 4-MA inhibited the 5 alpha-reduction of those metabolites (such as 6 beta-hydroxytestosterone) that were found to be excellent substrates for steroid 5 alpha-reductase. In the absence of 4-MA, these metabolites eventually disappeared from incubations containing liver microsomes from mature female rats. Second, 4-MA inhibited the formation of 5 alpha-dihydrotestosterone, which otherwise competed with testosterone for oxidation by cytochrome P-450. This second mechanism explains why 4-MA increased the accumulation of metabolites (such as 7 alpha-hydroxytestosterone) that were found to be poor substrates for steroid 5 alpha-reductase. Despite its marked effect on the accumulation of hydroxylated testosterone metabolites, 4-MA had no effect on their initial rate of formation by liver microsomes from either male or female rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号