首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

2.
An autoimmune hypothesis for the etiology of Meniere's disease has been proposed. In this study, we focused on gangliosides as potential antigens for autoantibodies in Meniere's disease patients. In an attempt to investigate ganglioside antigens which respond to the serum of patients with Meniere's disease, we analyzed gangliosides of human acoustic neurinomas, and used them as antigens to broadly explore gangliosides that react to serum. All the acoustic neurinoma samples used in the present study showed a similar ganglioside profile on TLC (thin-layer chromatography). For the microscale ganglioside analysis, a newly developed TLC blotting/secondary ion mass spectrometry (SIMS) system together with TLC immunostaining method was employed. Most of the ganglioside bands could be analyzed, and they were identified as GM3, GM2, SPG, GM1a, GD3, S-i (sialyl-i ganglioside) and GD1a. GD1a was the predominant ganglioside and many neolactoseries gangliosides were recognized by immunological analysis. Next, the immune reactivity of serum samples, from patients with Meniere's disease, with the acoustic neurinoma gangliosides was studied by TLC immunostaining. The result showed that five of 11 patients with Meniere's disease and one of eight normal subjects reacted with a specific band, which was identified as S-i by the TLC blotting/SIMS system. The findings of the present study indicate that S-i ganglioside is an autoantigen and possibly involved in the pathogenesis of Meniere's disease.  相似文献   

3.
In addition to ganglioside GM1b, an unusual and extremely minor ganglioside, GD1 alpha, was efficiently isolated from bovine brain by combination of Q-Sepharose and Iatrobeads column chromatographies. In the course of purification steps, the presence of the sialidase-labile ganglioside was proved by a highly sensitive TLC/enzyme-immunostaining method. The structure was characterized by gas-liquid chromatography, permethylation study, sialidase degradation, immunostaining with specific antibodies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry. The content of the ganglioside was very small (0.016%) in the total gangliosides. This finding suggests that a synthetic pathway of asialo GM1----GM1b----GD1 alpha may exist in mammalian brains. A monoclonal antibody NA-6 that was obtained by immunizing mice with purified GM1b reacted specifically with GM1b but showed no cross-reactivity with other structurally related gangliosides such as GM1a, GD1a, and so on. Using the method of TLC/immunostaining with NA-6, GM1b was found to be strongly expressed during embryonic days 14-17 in chick brains. Thus, it is assumed that extremely minor gangliosides like GM1b and GD1 alpha found in adult brains are characterized as embryonic molecules.  相似文献   

4.
Myelins of the PNS were isolated from human motor and sensory nerves of cauda equina, and their ganglioside compositions were compared. The predominant ganglioside in the human PNS myelins, both from motor and sensory nerves, was LM1 (sialosylneolactotetraosylceramide). Sialosyl-nLc6Cer and disialosyl-nLc4Cer, GD3, GM3, and GD1b were detected as common components of the two nerve myelins. Furthermore, it was revealed that the motor nerve myelin contained GM1 (about 15% of total gangliosides), whereas sensory nerve myelin contained only a trace amount of GM1 (less than 5%), by TLC analyses together with TLC immunostaining using anti-GM1 antibody. As for the disialoganglioside fraction, the content of GD1a, as well as that of GM1, differed in motor and sensory nerves. Thus, the different contents of the ganglioseries gangliosides in human motor and sensory nerve myelins were demonstrated.  相似文献   

5.
M Saito  M Ito  K Sugiyama 《Life sciences》1999,64(20):1803-1810
Gangliosides in pancreas, kidney, and liver tissues from streptozotocin-induced diabetic rats were analyzed by methods including thin-layer chromatographic (TLC) immunostaining with a specific monoclonal antibody to c-series gangliosides. In rats suffering diabetes for one month, the composition of major gangliosides in pancreatic tissue was almost identical to control, except for a slight increase in the content of GM3. Though c-series gangliosides such as GT3, GT2, GQ1c, and CP1c were expressed in normal pancreatic tissue, they were practically lost in pancreas of diabetic animals. A specific loss of c-series gangliosides was also observed in pancreatic tissue from rats suffering diabetes only for three days. While the composition of major gangliosides in the kidney did not change, streptozotocin-induced diabetic conditions brought about significant increases in contents of practically all major ganglioside species in liver tissue. No change was observed in the amount and composition of c-series gangliosides in both tissues. These results strongly suggest that c-series gangliosides are specifically localized in pancreatic B cells.  相似文献   

6.
Saito M  Sugiyama K 《Life sciences》2000,67(15):1891-1899
Gangliosides of eye lenses from normal and experimentally induced diabetic rats were investigated by methods including glycolipid-overlay techniques. Adult rat eye lens showed a complex ganglioside pattern that consisted of six major ganglioside components. These gangliosides were identified as GM3, GD3, GD1a, GD1b, GT1b, and GQ1b based upon their reactivity to anti-GM1 antibody after in situ sialidase treatment and mobility on thin-layer chromatography (TLC). Gangliosides in eye lens were further characterized by TLC-immunostaining with A2B5, a specific monoclonal antibody directed toward c-series gangliosides. Eye lens contained GT3 as the main c-series ganglioside component. Unexpectedly, the relative concentration of GT3 in total gangliosides of eye lens was highest among neural and extra-neural tissues examined. Administration of streptozotocin to rats caused a severe reduction in the GT3 content in eye lenses as early as day 3 without apparent changes in the composition of major gangliosides. Alloxan failed to produce such an effect despite producing similar hyperglycemic conditions. These results suggest that rat eye lens probably contains a streptozotocin-susceptible cell type(s), which is highly enriched with c-series gangliosides.  相似文献   

7.
Rat stomach gangliosides were purified and their distribution in the different tissue compartments was established. Three major monosialogangliosides were found: GM3, GM1, and a ganglioheptaosylceramide carrying a blood group B determinant. This latter structure was characterized by exoglycosidase degradation, immunostaining with a monoclonal anti-blood group B antibody on thin layer chromatogram, permethylation analysis, electron-impact mass spectrometry of the permethylated-reduced and trimethylsilylated molecule, and 1H NMR spectroscopy of the native ganglioside. It was found to be (Formula: see text) i.e. a GM1 structure substituted with the blood group B determinant and was called B-GM1. A similar structure has been previously identified in precancerous rat liver and chemically induced rat hepatoma (Holmes, E. H., and Hakomori, S. (1982) J. Biol. Chem. 257, 7698-7703). Fucosyl-GM1 was also detected as a minor ganglioside in rat gastric mucosa. The ganglioside profile was modified during the postnatal development. The contribution of GM3 and GD3, which accounted for 95% of the ganglioside sialic acid at birth, decreased during the first 3 weeks of life. GM1, fucosyl-GM1, and B-GM1 were not detected at birth. The concentration of the fucogangliosides increased during the 2nd and 3rd weeks after birth, was stable during the 4th week and then decreased, whereas that of GM1 increased steadily between 6 days and 2 months of age. B-GM1, which has been defined as a tumor-associated ganglioside in the rat liver, was found to be a developmentally regulated antigen of the normal rat stomach.  相似文献   

8.
The Rcho-1 cell line, originally established from a rat choriocarcinoma, shows differentiation into placental trophoblastic giant cell-like cells and has been used to study the mechanism of placental function control. In the present study, we analysed the ganglioside composition of Rcho-1 cells by HPTLC orcinol/H2SO4, TLC/immunostaining and immunohistochemistry. Rcho-1 cells expressed GM3 and GD3 as the major gangliosides and CTH as major neutral glycolipid when they were cultured in growth medium (20% FCS) or transplanted beneath the kidney capsule. The expression of these gangliosides was strong in the undifferentiated small cells, whereas the completely differentiated giant cells showed poor staining with antibodies against the gangliosides. Under culture conditions to induce cell differentiation using horse serum (1–20% HS), the expression of GD3 was suppressed and re-expressed when the medium was changed to growth medium, suggesting that a change of ganglioside components may trigger and define the direction of terminal differentiation. Thus the composition of glycolipids is conserved in Rcho-1 cells and is similar to that of the rat placenta, where GM3 is dominant in mid-pregnancy and decreased in late pregnancy, whereas GD3 is low in mid-pregnancy and increased in late pregnancy.  相似文献   

9.
Specific immune damage to liposomes containing Forssman or globoside glycolipid was inhibited when the liposomes also contained ganglioside. The activity of a human monoclonal Waldenstr?m macroglobulin antibody to Forssman glycolipid was inhibited by each of three gangliosides tested, GM3, GD1a and GD1b. Inhibition of the monoclonal antibody was dependent on the amount of ganglioside in the liposomes, and was diminished by reducing the relative amount of ganglioside. Inhibition also correlated positively with the number of ganglioside sialic acid groups, with inhibition by GT1b greater than GD1a greater than GM3. Naturally occurring human antibodies to globoside glycolipid were detected in 18% (9 out of 50) of normal human sera tested. Immune damage to liposomes induced by each of the three highest-reacting human anti-globoside sera was blocked by liposomal GM3. We conclude that gangliosides can strongly influence immune damage to membranes induced by antibody interactions with adjacent neutral glycolipids.  相似文献   

10.
To examine the specificity of monoclonal antibody A2B5, four A2B5-reactive gangliosides (designated as G-1, G-2, G-3 and G-4) were purified from bonito fish brain. Ganglioside-1, -2, and -3 migrated above GD1b, below GQ1b, and far below GQ1b on thin-layer chromatography. Ganglioside-4 had the slowest chromatographic mobility and migrated below G-3. The structures of these gangliosides were characterized by overlay analysis with glycolipid-specific ligands, product analysis after sialidase or mild acid treatment, and electrospray ionization-mass spectrometry (ESI-MS). Accordingly, G-1, G-2 and G-3 were identified to be GT3, GQ1c and GP1c, respectively. The ganglioside G-4 was shown to have the following structure: NeuAc-NeuAc-NeuAc-Galbeta1-3Gal NAcbeta1-4(NeuAc-NeuAc-NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer. The antibody A2B5 reacted with these c-series gangliosides, but not with GD3 and other gangliosides and neutral glycosphingolipids. The antigenic epitope for A2B5 was assumed to include the trisialosyl residue connected to the inner galactose of the hemato- or ganglio-type oligosaccharide structure of gangliosides. Phylogenetic analysis of brain gangliosides using the A2B5 preparation demonstrated that c-series gangliosides are enriched in lower animals, especially bony fish of different species. The monoclonal antibody A2B5 would be a useful tool for examining the distribution and function of c-series gangliosides.  相似文献   

11.
The ganglioside fraction of human gastric mucosa was analyzed with a newly established anti-GM2 monoclonal antibody KM531. Using this antibody, accumulation of GM2 was observed in all of four cases of gastric carcinoma. In all ganglioside fractions extracted from normal gastric mucosa obtained from eight cases of peptic ulcer GM2 itself was not detected, but three kinds of glycolipid showing slower mobility than GM2 on thin-layer plates were detected by immunostaining with KM531. These glycolipids were assigned as NGM-1, -2, and -3. They were completely lost in all carcinoma tissues and in non-cancerous gastric mucosa from two cases of gastric cancer, and they were also not detected in the ganglioside fraction of small or large intestine. Of these glycolipids, the major one, NGM-1, was isolated from the pooled ganglioside fraction of normal gastric mucosa obtained from cases of peptic ulcer. The structure was determined by proton nuclear magnetic resonance, negative ion fast atom bombardment-mass spectrometry, gas chromatography-mass spectrometry, and treatment with exoglycosidases and mild acid hydrolysis. The structure was GalNAc beta 1----4(NeuAc alpha 2----3) Gal beta 1----4GlcNAc beta 1----3 Gal beta 1----4Glc beta 1----1Cer, which has the same terminal sequence as GM2 but has internal neolacto series structure. This epitope was previously identified as Cad blood group antigen. The decrease of this glycolipid and the increase of GM2 was considered to be a cancer-associated change in gastric mucosa.  相似文献   

12.
Acidic glycosphingolipids of the liver of English sole, Parophrys vetulus, have been isolated and characterized by 1H nuclear magnetic resonance spectroscopy, methylation analysis, and by direct probe electron-impact and fast atom bombardment mass spectrometry. In addition to the acidic glycosphingolipids with known structures (sulfatide, GM4, GM3, GM2, and GD1a), two fractions of a major monosialosylganglioside with TLC mobility slower than GM1 were isolated and characterized as having the following structure. (Formula:q see text). The structure represents a novel combination of a terminal Forssman disaccharide (GalNAc alpha 1----3GalNAc beta 1----3R) and a GM1 ganglioside core linked together. The identity of the terminal Forssman disaccharide was further established by TLC immunostaining with an anti-Forssman monoclonal antibody. This antibody showed strongly positive staining of the ganglioside only after removal of the sialic acid. Thus, the II3NeuAc residue inhibited antibody binding to the terminal disaccharide unit. Analysis of the ceramide moieties of both fractions indicated a predominance of 16:0, 22:1, 22:0, and 24:1 fatty acids in the faster migrating form and 16:0, 18:0, and 18:1 in the slower form in combination with d18:1 sphingosine.  相似文献   

13.
Liver gangliosides of different animal species were analyzed. Bony fish liver contained a major ganglioside that migrated faster than GM3 on thin-layer chromatography (TLC). This ganglioside was identified to be GM4 (NeuAc) by methods including product analysis after sialidase treatment and negative-ion electrospray ionization (ESI)-mass spectrometry (MS). The presence of GM4 (NeuGc) in fish liver was also demonstrated. The main ganglioside band of bovine liver consisted of two different molecular species, i.e. GD1a (NeuAc/NeuAc) and GD1a (NeuAc/NeuGc). Major gangliosides of liver tissue exhibited a distinct phylogenetic profile; GM4 was expressed mainly in lower animals such as bony fish and frog liver, whereas mammalian liver showed ganglioside patterns with smaller proportions of monosialo ganglioside species. While c-series gangliosides were consistently expressed in lower animals, they were found only in mammalian liver of particular species. No apparent trend was observed between the concentration of liver gangliosides and the phylogenetic stage of animals. The present study demonstrates the species-specific expression of liver gangliosides.  相似文献   

14.
c-Series gangliosides in extraneural tissues from young and adult rats were examined using thin-layer chromatographic (TLC) immunostaining with a specific monoclonal antibody A2B5. The composition of c-series gangliosides significantly differed among tissues. In adult rats, while liver tissue contained GT1c, GQ1c, and GP1c, renal tissue had GT3 as the major c-series ganglioside with GT2 in a lesser amount. Pancreatic tissue expressed c-series gangliosides that consisted of GT3, GT2, GQ1c, and GP1c. In other tissues including adrenal, thyroid, and eye lens, GT3 constituted the main c-series ganglioside species. While total ganglioside contents of extraneural tissues were much lower than that of brain tissue, the proportions of c-series gangliosides to total gangliosides were higher in many extraneural tissues. Interestingly, eye lens had the highest GT3 content among rat tissues examined. The compositions and concentrations of c-series gangliosides in liver and kidney significantly differed between 5-day-old and 7-week-old rats, suggesting the development-dependent expression of c-series gangliosides in these tissues. These results suggest that the expression of c-series gangliosides in extraneural tissues is regulated in a tissue-specific manner.  相似文献   

15.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

16.
Several monosialogangliosides containing the type A-active epitope have been detected in type A erythrocytes on immunological analysis with a monoclonal antibody, and three of them were purified by repeated silica bead column chromatography and by scraping from the TLC plate. Two of these A-active gangliosides were characterized by methylation analysis by GC/MS, negative SIMS, MALDI-TOF/MS, proton nuclear magnetic resonance spectroscopy, and immunological assays, and their structures were concluded to be as follows. A-active ganglioside I:A-active ganglioside II:The reactivity of the purified gangliosides to the anti-A monoclonal antibodies (mAbs) exhibited enhancement after removal of the sialic acid. Therefore, the sialic residue has been shown to inhibit the binding to the terminal A-active epitope through the formation of an immune complex. To confirm the presence of A- (including S-A-I, -II and -III) and B-active gangliosides, the reactivity of anti-A and -B mAbs were investigated using total gangliosides from type A, -B and -AB erythrocytes on TLC plate. The results were that the gangliosides from types A and AB showed positive reaction to anti-A mAbs, whereas in the anti-B mAbs binding the gangliosides from types B and AB were positive. Thus, it revealed that A-active gangliosides were present in type A and -AB, and B-active gangliosides in types B and AB. As there was no difference in respective gangliosides on type AB erythrocytes of 22 individuals, both A- and B-active gangliosides are equally present in type AB erythrocytes. The biological significance of these A- and B-active ganglioside variants remains vague at present. As these molecules exhibit different reactivities to the anti-A mAbs, it is very likely that they can regulate the antigenicity of the A-epitope on the cell surface.  相似文献   

17.
Spleen cells from NZB mouse immunized with a membrane fraction of rabbit thymus tissue were fused with BALB/c 6-thioguanine-resistant myeloma cells, P3-X63-Ag8.653. One hybridoma clone (Y-2-HD-1) produced IgM immunoglobulin that bound to an N-glycolylneuraminic acid-containing GM2 ganglioside, GM2(NeuGc), which is known to be a Hanganutziu-Deicher antigen. The specificity of the Y-2-HD-1 monoclonal antibody was examined, using authentic glycosphingolipids structurally related to GM2(NeuGc), by means of an enzyme-linked immunosorbent assay and thin-layer chromatography/enzyme immunostaining, respectively. The monoclonal antibody was found to be highly specific to GM2(NeuGc) and the epitope was a non-reducing terminal GalNAc beta 1-4[NeuGc alpha 2-3]Gal structure. This monoclonal antibody (Y-2-HD-1) bound to native mouse erythrocytes, in which GM2(NeuGc) is a major ganglioside. These results indicate that GM2(NeuGc) is located on the surface of mouse erythrocytes.  相似文献   

18.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   

19.
A monoclonal antibody, 188C1, raised against skin tissue from the back of bullfrogs (Rana catesbeiana) was found to recognize a common antigen in neural and intestinal tissues of chicken (Fujita, S. (1989) in Biological Transduction Mechanisms (Kasai, M., Yoshioka, T., and Suzuki, H., eds) pp. 159-177, Japan Scientific Societies Press, Tokyo Japan). The 188C1 antigen was isolated from chick intestinal tissues and characterized as a novel ganglioside by means of Q-Sepharose and Iatrobeads column chromatography, and chemical, immunochemical, and immunohistochemical analyses. The chemical structure was as follows: Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1'Cer Fuc alpha 1-3 NeuAc alpha 2-3 This represents a novel hybrid structure of type 2 Le(x) epitope and GM1 ganglioside core structure, designated as Le(x)-GM1. Monoclonal antibody 188C1 reacted strongly with Le(x)-GM1 on thin layer chromatography, but its reactivity was greatly reduced when sialic acid was removed from the antigen. This indicated that the internal sialic acid residue might participate in antigenicity of the Le(x) determinant. In addition to 188C1, a more specific antibody reacting with Le(x)-GM1 but not with asialo-Le(x)-GM1 was raised by immunizing a rabbit with Le(x)-GM1. TLC/enzyme immunostaining using this specific antibody showed the presence of Le(x)-GM1 in chick intestinal tissue, but not in chick brain.  相似文献   

20.
The expression of gangliosides and neutral glycosphingolipids (GSLs) in the lymph nodes of mice lacking the gene for the tumour necrosis factor-alpha receptor p55 (TNFR1) has been investigated. GSL expression in the tissues of mice homozygous (TNFR1-/-) or heterozygous (TNFR1+/-) for the gene deletion was analysed by flow cytometry and high-performance thin-layer chromatography (HPTLC) followed by immunostaining with specific antibodies. HPTLC immunostaining revealed that lymph nodes from TNFR1-/- mice had reduced expression of ganglioside GM1b and GalNAc-GM1b, neolacto-series gangliosides, as well as the globo- (Gb3, Gb4 and Gb5) and ganglio-series (Gg3 and Gg4) neutral GSLs. Flow cytometry of freshly isolated lymph node cells showed no significant differences in GSL expression, except for the GalNAc-GM1b ganglioside, which was less abundant on T lymphocytes from TNFR1-/- lymph nodes. In TNFR1-/- mice, GalNAc-GM1b+/CD4+ T cells were twofold less abundant (3.8% vs 7.6% in the control mice), whereas GalNAc-GM1b+/CD8+ T cells were fourfold less abundant (5.0% vs 20.2% in the control mice). This study provides in vivo evidence that TNF signalling via the TNFR1 is important for the activation of GM1b-type ganglioside biosynthetic pathway in CD8 T lymphocytes, suggesting its possible role in the effector T lymphocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号