首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoproteins of high density lipoproteins were detected in the urine of normal subjects after the urinary proteins were highly concentrated. By immunoelectrophoresis, all of the urinary apoproteins gave precipitin lines with similar electrophoretic mobility. This suggests that the various apoproteins are present in the same particle. The apoproteins were present only in the ultracentrifugal fraction of density greater than 1.24 g/ml. Neither apoprotein B nor apoprotein E were detected in the urine, suggesting that very low density and low density lipoproteins are not excreted in the urine of normal subjects.  相似文献   

2.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

3.
4.
5.
6.
Five glycosphingolipids (GSL), glucosylceramide, lactosylceramide, trihexosylceramide, globoside, and hematoside (GM3) were studied in serum from normal human subjects and patients with dyslipoproteinemia and found to be exclusively associated with the various classes of serum lipoproteins. Based on a unit weight of lipoprotein protein, the total amount of GSL in serum normal subjects was twice as high in very low density lipoprotein (VLDL) (d less than 1.006 g/ml) and low density lipoprotein (LDL) (d 1.019-1.063 g/ml) as in high density lipoproteins HDL2 (d 1.063-1.125 g/ml) or HDL3 (d 1.125-1.21 g/ml). In abetalipoproteinemia the levels of serum GSL were slightly reduced when compared to normal serum and were all found in the only existing lipoprotein, HDL; this contained 2-3 moles of GSL/ mole of lipoprotein as compared to 0.5 GSL/mole in normal HDL. In hypobetalipoproteinemia and Tangier disease, the serum glycosphingolipids were 10 to 30% reduced in concentration compared to the 75% reduction in other lipids, and were again found to be associated only with the serum lipoproteins. The relative proportions of GSL did not vary substantially in the normo- and hypolipidemic subjects studied. Only in patients with homozygous familial hypercholesterolemia was there a significant (3-4-fold) elevation of all of the five GSL species and this elevation of all of the five GSL species and this elevation correlated well with that of the circulating cholesterol and LDL. On a molar basis the LDL of these patients contained the same amount of GSL as normal subjects (5 moles GSL/mole protein). It is concluded that: (1) glycosphingolipids are associated only with the major lipoprotein classes in both normal and dyslipoproteinemic serum; (2) the relative proportions of the five glycosphingolipids are not significantly affected by dyslipoproteinemia; (3) only in severe hypolipoproteinemia do the remaining serum lipoproteins carry a complement of glycosphingolipids greater than normal. Although our results establish that glycosphingolipids are intimately associated with serum lipoproteins, the mode of association or the structural and functional significance of such an association remains undetermined.  相似文献   

7.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

8.
Chylomicron retention disease is characterized by fat malabsorption, hypocholesterolemia, normal fasting triglycerides, and marked intestinal steatosis despite the presence of both plasma and intestinal apoprotein B. The defect remains unknown but presumably involves the synthesis or secretion of chylomicrons. The present investigation examines this hypothesis by studying the biosynthesis of chylomicrons in cultured jejunal explants and by defining the quantitative and qualitative abnormalities of plasma lipids and of circulating lipoproteins. Following 2-3 years of a low fat diet supplemented with medium chain triglycerides, six patients with chylomicron retention disease had significantly higher triglyceride (TG) levels coupled with a decrease in both free (FC) and esterified cholesterol (EC) as well as in essential fatty acids and phospholipids (PL) when compared to healthy controls. The low total plasma cholesterol was largely accounted for by low levels of both low density (LDL) and high density lipoprotein (HDL) cholesterol. VLDL and LDL were characterized by a diminished percentage of CE with an increase of TG while HDL contained relatively more FC as well as PL and less CE. The diameter of VLDL was larger whereas those of LDL and HDL were smaller than in normal controls. Jejunal explants, when incubated with [14C]palmitate, were capable of normal biosynthesis of TG, diglycerides, PL, and CE. These lipids, however, except for PL, were retained in the tissue and could not be secreted into the culture medium. Incubation of intestinal biopsies with [3H]leucine and [14C]mannose resulted in normal protein synthesis and reduced glycosylation. The presence of intestinal apoB-48 was confirmed by immunoblot using 2D8 antibodies. These data suggest that the intestinal defect in this disease results from a disorder of the final assembly of chylomicrons or in the mechanism of their exocytosis.  相似文献   

9.
Low-density lipoproteins (LDL) play a key role in the delivery of photosensitizers to tumor cells in photodynamic therapy. The interaction of deuteroporphyrin, an amphiphilic porphyrin, with LDL is examined at equilibrium and the kinetics of association/dissociation are determined by stopped-flow. Changes in apoprotein and porphyrin fluorescence suggest two classes of bound porphyrins. The first class, characterized by tryptophan fluorescence quenching, involves four well-defined sites. The affinity constant per site is 8.75 x 10(7) M(-1) (cumulative affinity 3.5 x 10(8) M(-1)). The second class corresponds to the incorporation of up to 50 molecules into the outer lipidic layer of LDL with an affinity constant of 2 x 10(8) M(-1). Stopped-flow experiments involving direct LDL porphyrin mixing or porphyrin transfer from preloaded LDL to albumin provide kinetic characterization of the two classes. The rate constants for dissociation of the first and second classes are 5.8 and 15 s(-1); the association rate constants are 5 x 10(8) M(-1) s(-1) per site and 3 x 10(9) M(-1) s(-1), respectively. Both fluorescence and kinetic analysis indicate that the first class involves regions at the boundary between lipids and the apoprotein. The kinetics of porphyrin-LDL interactions indicates that changes in the distribution of photosensitizers among various carriers could be very sensitive to the specific tumor microenvironment.  相似文献   

10.
The relationship between plasma lipids and lipoproteins and the lipolytic activities of post-heparin plasma lipoprotein lipase (LpL) and hepatic-triglyceride lipase (H-TGL) was examined in normal subjects. Seven males and six females were given a high fat diet [15% carbohydrate (CARB), 65% fat, 20% protein] for 2 weeks followed by 4 weeks of a high CARB diet (65% CARB, 15% fat, 20% protein). Changes in plasma triglyceride concentrations associated with diet were negatively correlated with changes in HDL-C (r = -0.533, P less than 0.001) and the HDL subfraction HDL2b (r = -0.308, P less than 0.001). The activity of LpL in post-heparin plasma was positively correlated with changes in plasma HDL-C (r = 0.668, P less than 0.001) and HDL2b (r = 0.457, P less than 0.001), and negatively with plasma triglycerides (r = -0.546, P less than 0.001). Changes in H-TGL activity were negatively correlated with changes in HDL2b (r = -231, P less than 0.05) and positively correlated with HDL-C (r = 0.326, P less than 0.01). These results in normal subjects provide further evidence that LpL and H-TGL are important enzymes in the metabolism of plasma lipoproteins and that changes in their activities contribute to plasma lipid and lipoprotein concentrations.  相似文献   

11.
12.
Human blood monocyte-derived macrophages that had been cultured for 7 days in the presence of 20% whole human serum exhibited saturable degradation of low-density lipoprotein (LDL). This degradation could be abolished by pre-incubating the cells with a high concentration of LDL in the medium and increased by pre-incubating the cells in medium containing lipoprotein-deficient serum. Cells obtained from the blood of homozygous familial-hypercholesterolaemic (FH) patients only exhibited a low rate of non-saturable degradation of LDL, even when pre-incubated without lipoproteins. Thus the saturable degradation of LDL by normal cells was mediated by the LDL receptors that are defective in FH patients and little LDL was taken up and degraded through any of the other endocytotic processes present in macrophages. Degradation by normal cells pre-incubated with lipoprotein-deficient serum had a higher apparent affinity for LDL than that of cells maintained in whole serum, which suggests that incubation with lipoprotein-deficient serum may not only induce the formation of LDL receptors but may also have a direct effect on the receptors themselves. Monocyte-derived macrophages from normal and FH subjects showed similar saturable degradation of acetylated LDL and also of LDL complexed with dextran sulphate. Maximal degradation of each was in the same range as the degradation of unmodified LDL by normal cells, and was not increased if the cells were pre-incubated with lipoprotein-deficient serum.  相似文献   

13.
14.
15.
16.
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The β1 region (residues 827–1880) of apoB has a high amphipathic β strand (AβS) content and is proposed to be one region anchoring apoB to lipoproteins. The AβS-rich region between apoB37 and apoB41 (residues 1694–1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37–41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37–41] was removed from the aqueous phase. Adsorbed apoB[37–41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37–41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by ±13% of its area. On an A/W interface, the apoB[37–41] monolayer became solid when compressed to 4 mN/m pressure indicating extended β-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AβS structure of apoB[37–41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.  相似文献   

17.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

18.
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ~40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ~55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.  相似文献   

19.
20.
Mipomersen, an antisense oligonucleotide that reduces hepatic production of apoB, has been shown in phase 2 studies to decrease plasma apoB, LDL cholesterol (LDL-C), and triglycerides. ApoC-III inhibits VLDL and LDL clearance, and it stimulates inflammatory responses in vascular cells. Concentrations of VLDL or LDL with apoC-III independently predict cardiovascular disease. We performed an exploratory posthoc analysis on a subset of hypercholesterolemic subjects obtained from a randomized controlled dose-ranging phase 2 study of mipomersen receiving 100, 200, or 300 mg/wk, or placebo for 13 wk (n = 8 each). ApoC-III-containing lipoproteins were isolated by immuno-affinity chromatography and ultracentrifugation. Mipomersen 200 and 300 mg/wk reduced total apoC-III from baseline by 6 mg/dl (38-42%) compared with placebo group (P < 0.01), and it reduced apoC-III in both apoB lipoproteins and HDL. Mipomersen 100, 200, and 300 mg doses reduced apoB concentration of LDL with apoC-III (27%, 38%, and 46%; P < 0.05). Mipomersen reduced apoC-III concentration in HDL. The drug had no effect on apoE concentration in total plasma and in apoB lipoproteins. In summary, antisense inhibition of apoB synthesis reduced plasma concentrations of apoC-III and apoC-III-containing lipoproteins. Lower concentrations of apoC-III and LDL with apoC-III are associated with reduced risk of coronary heart disease (CHD) in epidemiologic studies independent of traditional risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号