首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Picornaviruses are small pathogen RNA viruses, like poliovirus, hepatitis A virus, rhinovirus, and others. They produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornains 2A and 3C. Picornain 3C represents an intermediate between the serine peptidase chymotrypsin and the cysteine peptidase papain. Its steric structure resembles chymotrypsin, but its nucleophile is a thiol instead of the hydroxyl group. The histidine is a general base catalyst in chymotrypsin but forms a thiolate-imidazolium ion pair in papain. The third member of the catalytic triad is an acid (Glu71) as in chymotrypsin rather than an amide found in papain. Transformation of poliovirus 3C peptidase into a serine peptidase results in lower activity by a factor of 430, but the activity extends toward higher pH with the more basic hydroxyl group. The decrease in activity is caused by the less ordered active site, as supported by the unfavorable entropy of activation. At 25 degrees C the specificity rate constant for the thiol enzyme approaches k(1), the rate constant for the formation of the enzyme-substrate complex, but k(2), the acylation constant, becomes predominant with the increase in temperature. In contrast, for the serine peptidase the specificity constant is less than k(1) over the entire temperature range, and the transition state is controlled by both k(1) and k(2). The acidic component of the catalytic triad is essential for activity, but its negative charge does not influence the ionization of the thiol group.  相似文献   

2.
3.
4.
Picornaviruses produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornain-2A and -3C. Picornain-3C has characteristics of both the serine peptidase chymotrypsin and the cysteine peptidase papain in that the 3D structure resembles chymotrypsin, but its nucleophile is a cysteine SH rather than a serine OH group. We investigated the specificity of poliovirus picornain-3C (PV3C) protease and the influence of kosmotropic salts on catalytic activity, using FRET peptides related to a cleavable segment of the virus polyprotein. The peptidase activity of PV3C was found to be 100-fold higher in the presence of 1.5 M sodium citrate. This activation was anion-dependent, following the Hofmeister series citrate(3-) > SO4(2-) > HPO4(2-) > acetate- > HCO3(-) > Cl-. The activation appeared to be independent of substrate sequence and arose primarily from an increase in kcat. A shift to higher pH was also observed for the pK1 of the enzyme pH-activity profile. Experiments with the fluorescent probe ANS (1-anilino-8-naphthalene sulfonate) showed that the protease bound the dye in the presence of 1 M sodium citrate but not in its absence or in the presence of 1 M NaCl. Structural changes in PV3C protease were detected using circular dichroism and the thermodynamic data indicated a more organized active site in the presence of sodium citrate. PV3C protease was also activated in D2O, which was added to the activation by citrate. These effects seem to be related to nonspecific interactions between the solvent and the protein. Our data show that the catalytic efficiency of PV3C protease is modulated by the composition of the environment and that this modulation may play a role in the optimal processing of polyprotein for the virus assembly that occurs inside specific vesicles formed in poliovirus-infected cells.  相似文献   

5.
Nonstructural protein 3 (NS3) from hepatitis C virus (HCV) is a serine protease that provides an essential function in maturation of the virus by cleaving the nonstructural regions of the viral polyprotein. The goal of this work was to isolate RNA aptamers that bind specifically to the NS3 protease active site in the truncated polypeptide DeltaNS3. RNA aptamers were selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). The RNA pool for SELEX had a 30-nucleotide randomized core region. After nine selection cycles, a pool of DeltaNS3-specific RNA aptamers were obtained. This RNA pool included 45 clones that divided into three main classes (G9-I, II and III). These classes include the conserved sequence GA(A/U)UGGGAC. These aptamers bind to DeltaNS3 with a binding constant of about 10 nM and inhibit approximately 90% of the protease activity of DeltaNS3 and MBP-NS3 (full-length of NS3 fused with maltose binding protein). In addition, these aptamers inhibited approximately 70% of the MBP-NS3 protease activity in the presence of the NS4A peptide P41. G9-I aptamer appeared to be a noncompetitive inhibitor for DeltaNS3 with a Ki approximately 100 nM in the presence of P41. These results suggest that the pool of selected aptamers have potential as anti-HCV compounds. Mutational analysis of the G9-I aptamer demonstrated that the sequences required for protease inhibition are in stem I, stem III and loop III of the aptamer. These regions include the conserved sequence GA(A/U)UGGGAC.  相似文献   

6.
Here, we describe a novel method for the site-specific C-terminal PEGylation of recombinant proteins. This general approach exploits chemical cleavage of precursor intein-fusion proteins with hydrazine to directly produce recombinant protein hydrazides. This unique functionality within the protein sequence then facilitates site-specific C-terminal modification by hydrazone-forming ligation reactions. This approach was used to generate folded, site-specifically C-terminal PEGylated IFNalpha2b and IFNbeta1b, which retained excellent antiviral activity, demonstrating the utility of this technology in the PEGylation of therapeutic proteins. As this methodology is straightforward to perform, is compatible with disulfide bonds, and is exclusively selective for the protein C-terminus, it shows great potential as general technology for the site-specific engineering and labeling of recombinant proteins.  相似文献   

7.
Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3C(pro) and the viral polymerase 3D(pol) and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-A resolution and the G64S fidelity mutant of 3D(pol) at a 3.0-A resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3D(pol) G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3D(pol) makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.  相似文献   

8.
9.
Sentrin-specific protease 3 (SENP3), a member of the desumoylating enzyme family, is known as a redox sensor and could regulate multiple cellular signaling pathways. However, its implication in myocardial ischemia reperfusion (MIR) injury is unclear. Here, we observed that SENP3 was expressed and upregulated in the mouse heart depending on reactive oxygen species (ROS) production in response to MIR injury. By utilizing siRNA-mediated cardiac specific gene silencing, SENP3 knockdown was demonstrated to significantly reduce MIR-induced infarct size and improve cardiac function. Mechanistic studies indicated that SENP3 silencing ameliorated myocardial apoptosis mainly via suppression of endoplasmic reticulum (ER) stress and mitochondrial-mediated apoptosis pathways. By contrast, adenovirus-mediated cardiac SENP3 overexpression significantly exaggerated MIR injury. Further molecular analysis revealed that SENP3 promoted mitochondrial translocation of dynamin-related protein 1 (Drp1) in reperfused myocardium. In addition, mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, significantly attenuated the exaggerated mitochondrial abnormality and cardiac injury by SENP3 overexpression after MIR injury. Taken together, we provide the first direct evidence that SENP3 upregulation pivotally contributes to MIR injury in a Drp1-dependent manner, and suggest that SENP3 suppression may hold therapeutic promise for constraining MIR injury.  相似文献   

10.
From six one-year-old White red bulls, one randomly assigned carcass half was subjected to high voltage electrical stimulation (HVES) at 1 h post morten (pm). Longissimus dorsi (LD) steaks from control (C) and stimulated sides (ES) were removed at 24 h pm, stored at 4 degrees C and sampled at 1, 6, 8 and 12 days pm. HVES caused an immediate fall of pH with about 0.5 units (P less than 0.01), and an increase in temperature of about 1 degree C (P less than 0.05). HVES lowered LD shear force values (P less than 0.05), both at 1 and 8 days pm. Sarcomere length was not affected by stimulation, but cooking losses were increased in ES. Semi-quantitative SDS-PAGE, using BSA as internal standard showed the rate of degradation of several myofibrillar proteins to be increased by HVES. Levels of 43-kDa peptide increased upon ageing and were higher in ES (P less than 0.001). The level of 30-kDa peptide increases strongly in the early ageing period and faster in ES. It is striking that 1 h pm ES contain more 30 kDa (P less than 0.05), suggesting activation of calpain 1. The increase upon ageing in levels of 34- and 35-kDa peptides, often considered as the tropomyosins, suggests that these compounds are myofibrillar degradation products. Troponin-T (TNT) was degraded very fast in the early ageing period. The degradation rate was increased by HVES (P less than 0.005) and related to rate of tenderization (r = 0.90).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cleavage of the genome RNAs of poliovirus type 1, 2 and 3 with the ribonuclease III of Escherichia coli has been investigated with the following results: (1) at or above physiological salt concentration, the RNAs are completely resistant to the action of the enzyme, an observation suggesting that the RNAs lack “primary cleavage sites”; (2) lowering the salt concentration to 0.1 m or below allows RNase III to cleave the RNAs at “secondary sites”. Both large and small fragments can be obtained in a reproducible manner depending on salt conditions chosen for cleavage. Fingerprints of three large fragments of poliovirus type 2 RNA show that they originate from unique segments and represent most if not all sequences of the genome. Based upon binding to poly(U) filters of poly(A)- linked fragments, a physical map of the large fragments of poliovirus type 2 RNA was constructed. The data suggest that RNase III cleavage of single-stranded RNA provides a useful method to fragment the RNA for further studies.  相似文献   

12.
13.
14.
Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA   总被引:19,自引:0,他引:19  
G J Tobin  D C Young  J B Flanegan 《Cell》1989,59(3):511-519
The poliovirus terminal protein, VPg, was covalently linked to poliovirus RNA in a reaction that required synthetic VPg, Mg2+, and a replication intermediate synthesized in vitro. The VPg linkage reaction did not require the viral polymerase, host factor, or ribonucleoside triphosphates and was specific for template-linked minus-strand RNA synthesized on poliovirion RNA. The covalent nature of the bond between VPg and the RNA was demonstrated by the isolation of VPg-pUp from VPg-linked RNA. A model is proposed in which the tyrosine residue in VPg forms a phosphodiester bond with the 5'UMP in minus-strand RNA in a self-catalyzed transesterification reaction. It appears that either the RNA, VPg, or a combination of both forms the catalytic center for this reaction.  相似文献   

15.
Genome replication of poliovirus, as yet unsolved, involves numerous viral polypeptides that arise from proteolysis of the viral polyprotein. One of these proteins is 3AB, an RNA-binding protein with multiple functions, that serves also as the precursor for the genome-linked protein VPg (= 3B). Eight clustered charged amino acid-to-alanine mutants in the 3AB coding region of poliovirus were constructed and analyzed, together with three additional single-amino acid exchange mutants in VPg, for viral phenotypes. All mutants expressed severe inhibition in RNA synthesis, but none were temperature sensitive (ts). The 3AB polypeptides of mutants with a lethal phenotype were overexpressed in Escherichia coli, purified to near homogeneity, and studied with respect to four functions: (1) ribonucleoprotein complex formation with 3CDpro and the 5'-terminal cloverleaf of the poliovirus genome; (2) binding to the genomic and negative-sense RNA; (3) stimulation of 3CDpro cleavage; and (4) stimulation of RNA polymerase activity of 3Dpol. The results have allowed mapping of domains important for RNA binding and the formation of certain protein-protein complexes, and correlation of these processes with essential steps in viral genome replication.  相似文献   

16.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

17.
The nonstructural 3 (NS3) protein encoded by the hepatitis C virus possesses both an N-terminal serine protease activity and a C-terminal 3'-5' helicase activity. This study examines the effects of the protease on the helicase by comparing the enzymatic properties of the full-length NS3 protein with truncated versions in which the protease is either deleted or replaced by a polyhistidine (His tag) or a glutathione S-transferase fusion protein (GST tag). When the NS3 protein lacks the protease domain it unwinds RNA more slowly and does not unwind RNA in the presence of excess nucleic acid that acts as an enzyme trap. Some but not all of the RNA helicase activity can be restored by adding a His tag or GST tag to the N terminus of the truncated helicase, suggesting that the effects of the protease are both specific and nonspecific. Similar but smaller effects are also seen in DNA helicase and translocation assays. While translocating on RNA (or DNA) the full-length protein hydrolyzes ATP more slowly than the truncated protein, suggesting that the protease allows for more efficient ATP usage. Binding assays reveal that the full-length protein assembles on single-stranded DNA as a higher order oligomer than the truncated fragment, and the binding appears to be more cooperative. The data suggest that hepatitis C virus RNA helicase, and therefore viral replication, could be influenced by the rotations of the protease domain which likely occur during polyprotein processing.  相似文献   

18.
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) with its cofactor NS4A is a pivotal enzyme for the replication of HCV. Inhibition of NS3-4A protease activity has been validated as an antiviral target in clinical studies of inhibitors of the enzyme. We have developed a sensitive time-resolved fluorescence (TRF) assay capable of detecting very low NS3-4A concentrations. A depsipeptide substrate is used that contains a europium-cryptate moiety and an efficient quenching group, QSY-7. The TRF assay is at least 30-fold more sensitive than a fluorescence energy transfer (FRET) assay and allows evaluation of NS3 protease inhibitors in reactions catalyzed by low enzyme concentrations (30 pM). Use of low enzyme concentrations allows for accurate measurement of inhibition by compounds with subnanomolar inhibition constants. The inhibitory potency of the potent protease inhibitor, BILN-2061, is significantly greater than previously reported. The ability to accurately determine inhibitory potency in reactions with low picomolar concentrations of NS3-4A is crucially important to allow valid comparisons between potent inhibitors. Studies of the interaction of NS3 with its NS4A cofactor at low enzyme concentration also reveal that the protease activity is salt dependent. This salt dependence of the enzyme activity is not present when high enzyme concentrations are used in the FRET assay.  相似文献   

19.
Picornaviruses, such as polio, translate their entire genome as a single polyprotein which must be proteolytically processed to produce the mature viral proteins. A majority of these cleavages are catalyzed by the virus-encoded cysteine proteinase, 3C. We report here the design and synthesis of a series of oligopeptide substrates, based upon native 3C cleavage sites, for an HPLC assay of poliovirus 3C proteinase activity. A similar series of peptides based upon human rhinovirus 3C cleavage sites was also examined. The enzyme shows a marked preference for those peptides with a proline in the P'2 position. A quenched fluorescent substrate suitable for continuous assay of 3C proteinase activity was also synthesized. Both the HPLC assay and the fluorescence assay were used to evaluate a number of potential 3C proteinase inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号