首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, we have shown that endothelin-1 (ET-1) activates phospholipase D independently from protein kinase C in osteoblast-like MC3T3-E1 cells. It is well recognized that phosphatidylycholine hydrolysis by phospholipase D generates phosphatidic acid, which can be further degraded by phosphatidic acid phosphohydrolase to diacylglycerol. In the present study, we investigated the role of phospholipase D activation in ET-1-induced arachidonic acid release and prostaglandin E2 (PGE2) synthesis in osteoblast-like MC3T3-E1 cells. ET-1 stimulated arachidonic acid release dose-dependently in the range between 0.1 nM and 0.1 μM. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the ET-1-induced arachidonic acid release in a dose-dependent manner as well as the ET-1-induced diacylglycerol formation. 1,6-bis-(cyclohexyloxyminocarbonylamino)-hexane (RHC-80267), an inhibitor of diacylglycerol lipase, significantly suppressed the ET-1-induced arachidonic acid release. The pretreatment with propranolol and RHC-80267 also inhibited the ET-1-induced PGE2 synthesis. These results strongly suggest that phosphatidylcholine hydrolysis by phospholipase D is involved in the arachidonic acid release induced by ET-1 in osteoblast-like cells. J. Cell. Biochem. 64:376–381. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Cultures of fetal rat dorsal root ganglion neurons (7 days in culture) were prelabeled with myo-[3H]inositol or [3H]arachidonic acid for 24 h and stimulated with 10 microM bradykinin for time intervals of 5-300 s. The incubation was terminated by addition of 5% perchloric acid to extract inositol phosphates or organic solvent to extract lipids. Inositol phosphates were resolved by anion-exchange HPLC; lipids were resolved by TLC. Bradykinin stimulation resulted in a 10-fold increased accumulation of inositol 1,4,5-trisphosphate (IP3) and inositol bisphosphate (IP2) (fivefold) by 5 s. The increase in IP3 was transient (half maximal by 1 min), whereas stimulated IP2 levels were sustained for several minutes. Even longer term increases were observed in inositol monophosphate. Stimulation also resulted in a threefold increase in arachidonic acid which was preceded by transient increases in diacylglycerol (twofold) and arachidonoyl-monoacylglycerol (threefold). The temporal lag in the accumulation of arachidonic acid with respect to diglyceride and monoglyceride suggested the involvement of di- and monoglyceride lipases in arachidonic acid mobilization. A role for phospholipase A2 is also possible, because pretreatment of cultures with quinacrine partially blocked arachidonic acid release. Bradykinin-stimulated arachidonic acid release was decreased in the presence of calcium channel blockers nifedipine or verapamil (50 microM), or EDTA (2.5 mM). The role of calcium was verified further in that accumulation of phosphatidic acid, diacylglycerol, and arachidonic acid was maximally stimulated by treatment with the calcium ionophore A23187 (20 microM).  相似文献   

3.
Human epidermal keratinocytes in culture were studied to evaluate their usefulness in demonstrating toxic events following exposure to sulfur mustard. Exposure of keratinocytes to sulfur mustard over a concentration range of 1–1000 μM HD, reduced NAD+ levels from 96% to 32% of control levels. When keratinocytes were exposed to a concentration of 300 μM HD, NAD+ levels began to fall at 1 hour and reached a plateau of 47% of control levels at 4 hours. Niacinamide, an inhibitor of the enzyme poly(ADP-ribose) polymerase, partially protected mustard-exposed cells against NAD+ depletion. It also protected cellular viability as assessed by vital staining 24 hours after exposure. This protection was not seen in long-term (72 hr) cultures. These studies suggest that human epidermal keratinocytes in culture can serve as a usefulin vitro model for research into the biochemical mechanisms of sulfur mustard-induced cutaneous injury.  相似文献   

4.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

5.
Addition of thrombin to human platelets results in production of lysophosphatidic acid. Such synthesis of lysophosphatidic acid can be inhibited by mepacrine, an inhibitor of the phospholipase A2 which attacks phosphatidic acid to give lysophosphatidic acid. In the present study, mepacrine was used at a concentration of 2.5-20 microM, sufficient to block aggregation and lysophosphatidic acid formation induced by 0.1 U/ml thrombin. Mepacrine, at this concentration, also blocked thrombin-induced phosphorylation of platelet myosin light chain and a 47 kDa protein, thrombin-induced secretion and thrombin-induced release of arachidonic acid from platelet phospholipids. However, mepacrine also partly inhibited the formation of phosphatidic acid in response to thrombin, consistent with some simultaneous inhibition of phospholipase C. Lysophosphatidic acid (2.5-22 microM) overcame the mepacrine block in thrombin-stimulated aggregation, protein phosphorylation and secretion without stimulating the release of arachidonic acid from platelet phospholipids or the formation of lysophosphatidic acid, and only slightly increasing phosphatidic acid formation. The results suggest that lysophosphatidic acid primarily acts distal to mepacrine inhibition of phospholipase A2 and phospholipase C and are consistent with the possibility that lysophosphatidic acid might be a mediator of part of the effects of low-dose thrombin on human platelets.  相似文献   

6.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

7.
We sought to investigate the mechanisms by which the calcium ionophore A23187 triggers arachidonic acid release in bovine pulmonary endothelial cells and to test the hypothesis that protein kinase C is involved in this process. Our results indicate that the mechanism by which A23187 increases phospholipase A2 activity and arachidonic acid release in bovine pulmonary arterial endothelial cells depends upon the concentration studied. At concentrations of 1 microM and 2.5 microM, A23187 increases phospholipase A2 activity and arachidonic acid release without stimulating protein kinase C. At concentrations of 5-12.5 microM, A23187 increases arachidonic acid release and phospholipase A2 activity in conjunction with a dose-dependent activation of membrane-bound protein kinase C. To test the hypothesis that these doses of A23187 increase phospholipase A2 activity by stimulating protein kinase C, we studied the effect of prior treatment with the protein kinase C inhibitor sphingosine. Sphingosine inhibits the increase in phospholipase A2 activity and arachidonic acid release caused by A23187 over the range 5-12.5 microM. To investigate further the potential role of protein kinase C, we studied the effects of the inactive phorbol ester 4 alpha-phorbol 12 beta-myristate 13 alpha-acetate (4 alpha-PMA) and an active phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (4 beta PMA). Neither 4 alpha-PMA nor 4 beta-PMA affected basal arachidonic acid release. 4 alpha-PMA also did not augment the effects of A23187. In contrast, 4 beta-PMA significantly augments the increase in phospholipase A2 activity and arachidonic acid release caused by lower doses of A23187. Under these conditions, sphingosine completely inhibits the stimulatory effects of 4 beta-PMA on protein kinase C translocation, phospholipase A2 and arachidonic acid release. Thus, at low doses (1 microM and 2.5 microM) A23187 increases phospholipase A2 activity and arachidonic acid release by a mechanism that does not involve protein kinase C. At these A23187 doses, activating membrane-bound protein kinase C with 4 beta-PMA causes a synergistic increase in phospholipase A2 activity and arachidonic acid release. At higher doses (5-12.5 microM), A23187 acts in large part by stimulating protein kinase C translocation. Overall, our results indicate that activating membrane-bound protein kinase C by itself is an insufficient stimulus to increase phospholipase A2 activity and arachidonic acid release in pulmonary endothelial cells, but activating protein kinase C can substantially augment the increase in phospholipase A2 activity and arachidonic acid caused by a small increase in intracellular calcium.  相似文献   

8.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

9.
《The Journal of cell biology》1995,130(5):1197-1205
Fibroblast contraction of stressed collagen matrices results in activation of a cAMP signal transduction pathway. This pathway involves influx of extracellular Ca2+ ions and increased production of arachidonic acid. We report that within 5 min after initiating contraction, a burst of phosphatidic acid release was detected. Phospholipase D was implicated in production of phosphatidic acid based on observation of a transphosphatidylation reaction in the presence of ethanol that resulted in formation of phosphatidylethanol at the expense of phosphatidic acid. Activation of phospholipase D required extracellular Ca2+ ions and was regulated by protein kinase C. Ethanol treatment of cells also inhibited by 60-70% contraction-dependent release of arachidonic acid and cAMP but had no effect on increased cAMP synthesis after addition of exogenous arachidonic acid or on phospholipase A2 activity measured in cell extracts. Moreover, other treatments that inhibited the burst of phosphatidic acid release after contraction--chelating extracellular Ca2+ or down-regulating protein kinase C--also blocked contraction activated cyclic AMP signaling. These results were consistent with the idea that phosphatidic acid production occurred upstream of arachidonic acid in the contraction- activated cAMP signaling pathway.  相似文献   

10.
Background and methods. In order to investigate the role of phospholipases and their immediately derived messengers in agonist-induced contraction of portal vein smooth muscle, we used the addition in the organ bath of exogenous molecules such as: phospholipases C, A(2), and D, diacylglycerol, arachidonic acid, phosphatidic acid, choline. We also used substances modulating activity of downstream molecules like protein kinase C, phosphatidic acid phosphohydrolase, or cyclooxygenase. Results. a) Exogenous phospholipases C or A(2), respectively, induced small agonist-like contractions, while exogenous phospholipase D did not. Moreover, phospholipase D inhibited spontaneous contractions. However, when added during noradrenaline-induced plateau, phospholipase D shortly potentiated it. b) The protein kinase C activator, phorbol dibutyrate potentiated both the exogenous phospholipase C-induced contraction and the noradrenaline-induced plateau, while the protein kinase C inhibitor 1-(-5-isoquinolinesulfonyl)-2-methyl-piperazine relaxed the plateau. c) When added before noradrenaline, indomethacin inhibited both phasic and tonic contractions, but when added during the tonic contraction shortly potentiated it. Arachidonic acid strongly potentiated both spontaneous and noradrenaline-induced contractions, irrespective of the moment of its addition. d) In contrast, phosphatidic acid inhibited spontaneous contractile activity, nevertheless it was occasionally capable of inducing small contractions, and when repetitively added during the agonist-induced tonic contraction, produced short potentiations of the plateau. Pretreatment with propranolol inhibited noradrenaline-induced contractions and further addition of phosphatidic acid augmented this inhibition. Choline augmented the duration and amplitude of noradrenaline-induced tonic contraction and final contractile oscillations. Conclusions. These data suggest that messengers produced by phospholipase C and phospholipase A(2) contribute to achieve the onset and maintenance of contraction, while phospholipase D-yielded messengers appear to provide a delayed "on/off switch" that ultimately brings relaxation.  相似文献   

11.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

12.
The pathologic mechanisms underlying sulfur mustard-induced skin vesication remain undefined. Papirmeister et al. (1985) have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving DNA alkylation, metabolic disruption, and enhanced proteolysic activity. We have previously utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed to sulfur mustard exhibited enhanced proteolytic activity. In this study, compounds known to alter the biochemical events associated with sulfur mustard exposure or to reduce protease activity were tested for their ability to block the sulfur mustard-increased proteolysis. Treatment of cells with niacinamide, N-acetyl-L-cysteine, or dexamethasone resulted in a decrease of sulfur mustard-increased protease activity. Complete inhibition of sulfur mustard-increased proteolysis was achieved by using protease inhibitors (antipain, leupeptin, and 4-(2-aminoethyl)-benzenesulfonylfluoride). These data suggest that therapeutic intervention in the biochemical pathways that culminate in protease activation or direct inhibition of proteolysis might serve as an approach to the treatment of sulfur mustard-induced pathology.Abbreviations APMSF 4-(2-aminoethyl)-benzenesulfonylfluoride, HCI - CPSPA Chromogenic Peptide Substrate Protease Assay - EDTA ethylenediaminetetraacetic acid - HD sulfur mustard - PBL human peripheral blood lymphocytes - pNA p-nitroaniline  相似文献   

13.
Cultured endothelial cells from human umbilical vein were incubated for 20 h at 37 degrees C in the presence of [U-14C]arachidonic acid. Around 60-70% of the radioactive fatty acid was incorporated into cell lipids and was predominantly found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerol (39%, 33%, 13% and 6.5% of total incorporated radioactivity, respectively). Stimulation of the cells with human thrombin (2 U/ml) or calcium ionophore A23187 (5 microM) promoted the release into supernatants of arachidonic acid, 6-ketoprostaglandin F1 alpha, prostaglandins E2 and F2 alpha, in decreasing order of importance. The amount of secreted material was 4-fold higher with A23187, compared to thrombin. Parallel to the liberation process, phosphatidylcholine underwent a rapid decrease of radioactivity with both agonists, suggesting the involvement of a Ca2+-dependent phospholipase A2. Phosphatidylethanolamine displayed a minor decrease with A23187, whereas some reacylation was observed at 10 min with thrombin. Phosphatidylinositol was non-significantly affected in thrombin-stimulated cells, whereas A23187 promoted an early but minor decrease, followed by resynthesis. In contrast to A23187, thrombin was also able to promote a significant hydrolysis of triacylglycerol, which might thus be implicated in the process of arachidonate liberation. Finally, radioactive phosphatidic acid and diacylglycerol appeared in endothelial cells, in response to the two agonists. However, diacylglycerol formation did not parallel that of phosphatidic acid, especially with A23187. Determination of the 14C/3H ratio of the different lipids upon cell labelling with both [14C]arachidonic acid and [3H]palmitic acid revealed that diacylglycerol and phosphatidic acid are hardly derived from inositol-phospholipid breakdown by phospholipase C. Other possible pathways involving for instance phospholipase C splitting of phosphatidylcholine are discussed.  相似文献   

14.
The effect of diarachidonin on the synthesis of prostaglandin E2 in rabbit kidney medulla slices was examined. The addition of diarachidonin stimulated prostaglandin E2 production in a dose-dependent manner. At three concentrations (10, 50 and 100 microM), increases in prostaglandin E2 formation induced by exogenous diarachidonin were 2-fold greater than those induced by exogenous arachidonic acid. Diacylglycerol or phosphatidic acid from egg lecithin had little or no effect on prostaglandin E2 production. Moreover, EGTA failed to inhibit diarachidonin-stimulated prostaglandin E2 formation, indicating that the stimulatory effect of diarachidonin is not mediated through the activation of endogenous phospholipase A2 (including phosphatidic acid-specific phospholipase A2). These results are discussed in the light of our former hypothesis that arachidonic acid release from kidney medulla phospholipids might occur through the sequential action of a phospholipase C coupled to diacylglycerol and monoacylglycerol lipases [Fujimoto, Akamatsu, Hattori & Fujita (1984) Biochem. J. 218, 69-74].  相似文献   

15.
Elevation in intracellular cyclic GMP levels is the proposed proximal mechanism for the vasodilatory and platelet inhibitory action of nitrovasodilators and of nitric oxide, the putative endothelium-derived relaxing factor. In this study, the stable cyclic GMP analogs, 8-bromo-cGMP and N2, 2'-O-dibutyryl-cGMP were found to inhibit the release of [3H]-arachidonic acid from gamma thrombin-stimulated human platelets in a time- and dose-dependent manner. Inhibition of the formation of arachidonic acid metabolites, 12-HETE and thromboxane B2, paralleled that of arachidonic acid release and was accompanied by a dose-dependent inhibition of platelet aggregation. The formation of phosphatidic acid, a metabolite of phospholipase C, however, was relatively preserved. At a concentration of 8-bromo-cGMP (2 mM) that produced near-total inhibition of arachidonic acid release, phosphatidic acid formation remained at 60% of control levels. Thus, cGMP analogs have a preferential inhibitory effect on the release and subsequent metabolism of arachidonic acid. The phospholipase A2/arachidonic acid pathway appears to be an important target for the physiologic action of cGMP, and EDRF, and for the pharmacologic action of nitrovasodilators.  相似文献   

16.
The potentiation by 1,2-dioctanoyl-sn-glycerol (DiC8) of ionomycin-induced platelet production of 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was investigated in correlation with extracellular Ca2+ concentrations and increases in [Ca2+]i, as detected with aequorin and fura-2. Extracellular Ca2+ concentrations greatly influenced the production of arachidonic acid metabolites induced by DiC8 and ionomycin, while that induced by ionomycin alone was minimally affected by variation of the extracellular Ca2+ concentration. In the synergy between ionomycin and 20 microM DiC8, the optimal concentrations of ionomycin shifted from high to low with increasing concentrations of extracellular Ca2+, suggesting that there might be a range of optimal [Ca2+]i for the production of the arachidonic acid metabolites. This hypothesis was confirmed by simultaneous measurements of [Ca2+]i increases, and the production of the arachidonic acid metabolites. With the aequorin method, the optimal concentrations of [Ca2+]i fell to between 10 microM and 20 microM, and with the fura-2 method, it fell to between 800 nM and 1800 nM. Direct measurements of [14C]arachidonic acid release suggested that the DiC8-potentiated production of arachidonic acid metabolites induced by ionomycin was attributable to increased arachidonic acid release. Since ionomycin and DiC8 induced relatively low levels of phosphatidic acid production, an indicator of phospholipase C activation, it was suggested that the increased arachidonic acid release was largely dependent upon phospholipase A2. Synergy between DiC8 and ionomycin was also observed with aggregation and serotonin release. Aggregation was induced by lower concentrations of ionomycin, and appeared to be more dependent upon extracellular Ca2+, while serotonin release required higher concentrations of ionomycin, and variations in extracellular Ca2+ affected the response minimally. These findings suggest that the mechanisms underlying the synergy between protein kinase C activation and Ca2+ mobilization differ among the three functions evaluated in this study.  相似文献   

17.
We compared the effects of overexpressing a tightly regulated anti-inflammatory cytokine, interleukin 10 (IL-10), and the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on sulfur mustard induced cytotoxicity in human epidermal keratinocytes. Both cytokines were overexpressed when compared with the cells transfected with the empty vector as determined by quantitative ELISA. Cells overexpressing interleukin 10 suppressed the pro-inflammatory cytokines interleukin 8 and interleukin 6 following exposure to 50-300 microM sulfur mustard. These cells exhibited delayed onset of sulfur mustard induced cell death. On the other hand, cells overexpressing tumor necrosis factor alpha induced a sustained elevation in both interleukin 6 and 8 expression following exposure to 50-300 microM sulfur mustard. These cells were sensitized to the effects of sulfur mustard that resulted in an increased sulfur mustard induced cell death. Normal human epidermal keratinocytes treated with sulfur mustard exhibited elevated levels of tumor necrosis factor alpha expression and increased activity of nuclear factor kappa B. Gene array data indicated that cells overexpressing interleukin 10 induced several genes that are involved in growth promotion and cell-fate determination. We, therefore, identify IL-10 and TNF-alpha signal transduction pathways and their components as possible candidates for early therapeutic intervention against sulfur mustard induced cell injury.  相似文献   

18.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

19.
Phospholipase D (PLD) activity was found to be present in the membrane fraction of rat myocardial cells by in vitro assays (36.7 +/- 4.1 nmol/mg protein per h against 1-palmitoyl-2-arachidonoyl- phosphatidylcholine) and demonstrated in intact cells by the specific transphosphatidylation reaction (in the presence of 0.02% ethanol) quantitated using n-[1-14C]butanol (201.16 +/- 7.1 pmol/min per g dry weight in the whole heart). Both methods showed a significant increase in PLD activity (by 62 and 44%, respectively) in hearts subjected to reversible (30 min) global normothermic ischemia followed by reperfusion (30 min). In hearts prelabeled with [1-14C]arachidonic acid, ischemia/reperfusion induced a significant increase in the amount of radiolabel incorporated into phosphatidic acid (PtdOH) (by 49.6%) and diacylglycerol (DG) (by 259%). DG kinase inhibition by 100 microM dioctanoylethylene glycol did not affect the ischemia/reperfusion DG and PtdOH levels while PtdOH phosphohydrolase inhibition with 40 microM propranolol produced a further increase in PtdOH (to 2.36-fold the baseline level) and a reduction in DG (to only 145% over the baseline levels). Put together, all these results suggest an activation of PLD during myocardial ischemia/reperfusion generating intracellular PtdOH, part of which is converted by PtdOH phosphohydrolase to DG. We further investigated the possible pathophysiological significance of the observed PLD activation. Stimulation of PLD with sodium oleate (20 microM) induced a significant improvement of functional recovery of ischemic hearts during reperfusion (as monitored by coronary flow and left intraventricular pressure measurements) and an attenuation of cellular injury as expressed by lactate dehydrogenase and creatine kinase release in the coronary effluent during reperfusion. These results suggest a PLD-mediated signaling in the ischemic heart which may benefit functional recovery during reperfusion.  相似文献   

20.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号