首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The distributions of allele sizes at eight simple-sequence repeat (SSR) or microsatellite loci in chimpanzees are found and compared with the distributions previously obtained from several human populations. At several loci, the differences in average allele size between chimpanzees and humans are sufficiently small that there might be a constraint on the evolution of average allele size. Furthermore, a model that allows for a bias in the mutation process shows that for some loci a weak bias can account for the observations. Several alleles at one of the loci (Mfd 59) were sequenced. Differences between alleles of different lengths were found to be more complex than previously assumed. An 8-base-pair deletion was present in the nonvariable region of the chimpanzee locus. This locus contains a previously unrecognized repeated region, which is imperfect in humans and perfect in chimpanzees. The apparently greater opportunity for mutation conferred by the two perfect repeat regions in chimpanzees is reflected in the higher variance in repeat number at Mfd 59 in chimpanzees than in humans. These data indicate that interspecific differences in allele length are not always attributable to simple changes in the number of repeats.   相似文献   

5.
A new method is proposed to adjust allele frequencies when allelic drop‐out is common. This method assumes Hardy–Weinberg equilibrium (HWE), and treats the problematic alleles as a one‐locus two‐allele system with dominance. By assuming that the homozygote frequency of the ‘recessive’ allele is measured correctly, we can back calculate the allele frequency of the ‘dominant’ allele, and adjust the heterozygote frequency accordingly. The drawback is that multilocus genotypes cannot be constructed and tests that use deviations from Hardy–Weinberg such as tests for bottlenecks become impossible. An example is given where a large homozygote excess (FIS = 0.44) is adjusted to a reasonable level (FIS = 0.046). The effect of scoring error was set in relation to sampling error and while FIS values can be seriously biased, FST values are not necessarily so, if scoring error and sample size are both low. As sample size increases, the effect of scoring error increases.  相似文献   

6.
Summary. An electrophoretic variant of sheep transferrin, TfL, has been described. Transferrin L has been shown to be controlled by a single codominant allele, TfL, at the Tf locus. Transferrin L is electrophoretically distinguishable from the very similar transferrin TfKCzech. The value of gradient polyacrylamide gel electrophoresis for transferrin phenotyping in sheep is discussed.  相似文献   

7.
When selection favours rare alleles over common ones (balancing selection in the form of negative frequency-dependent selection), a locus may maintain a large number of alleles, each at similar frequency. To better understand how allelic richness is generated and maintained at such loci, we assessed 201 sequences of the complementary sex determiner (csd) of the Asian honeybee (Apis cerana), sampled from across its range. Honeybees are haplodiploid; hemizygotes at csd develop as males and heterozygotes as females, while homozygosity is lethal. Thus, csd is under strong negative frequency-dependent selection because rare alleles are less likely to end up in the lethal homozygous form. We find that in A. cerana, as in other Apis, just a few amino acid differences between csd alleles in the hypervariable region are sufficient to trigger female development. We then show that while allelic lineages are spread across geographical regions, allelic differentiation is high between populations, with most csd alleles (86.3%) detected in only one sample location. Furthermore, nucleotide diversity in the hypervariable region indicates an excess of recently arisen alleles, possibly associated with population expansion across Asia since the last glacial maximum. Only the newly invasive populations of the Austral-Pacific share most of their csd alleles. In all, the geographic patterns of csd diversity in A. cerana indicate that high mutation rates and balancing selection act together to produce high rates of allele genesis and turnover at the honeybee sex locus, which in turn leads to its exceptionally high local and global polymorphism.Subject terms: Evolutionary genetics, Rare variants, Ecological genetics  相似文献   

8.
栾鹏涛  兰天  彭丹  于黎  张亚平 《遗传》2009,31(9):875-881
系统发育研究已是澄清所有进化历史问题的必由之路。选择合适的分子标记以及最大限度地挖掘和利用其所包含的系统发育信息是构建可靠的系统发育树的关键。等位基因杂合子(Intra-individual allele heterozygotes, IIAHs)是核基因内含子作为系统发育研究中的分子标记时常常出现的现象。如何挖掘并利用其中所包含的系统发育信息成为近年来系统发育学的研究热点。文章从此现象的产生、杂合子的分离以及现有的研究方法3个方面详尽概述, 阐述了IIAHs及其在系统发育分析中的最新研究进展。  相似文献   

9.
A new transferrin allele in sheep   总被引:2,自引:0,他引:2  
An electrophoretic variant of sheep transferrin, TfL, has been described. Transferrin L has been shown to be controlled by a single codominant allele, TfL, at the Tf locus. Transferrin L is electrophoretically distinguishable from the very similar transferrin TfKCzech. The value of gradient polyacrylamide gel electrophoresis for transferrin phenotyping in sheep is discussed.  相似文献   

10.
The peptide repertoire presented on human leukocyte antigen (HLA) class I molecules is largely determined by the structure of the peptide binding groove. It is expected that the molecules having similar grooves (i.e., belonging to the same supertype) might present similar/overlapping peptides. However, the extent of promiscuity among HLA class I ligands remains controversial: while in many studies T cell responses are detected against epitopes presented by alternative molecules across HLA class I supertypes and loci, peptide elution studies report minute overlaps between the peptide repertoires of even related HLA molecules. To get more insight into the promiscuous peptide binding by HLA molecules, we analyzed the HLA peptide binding data from the large epitope repository, Immune Epitope Database (IEDB), and further performed in silico analysis to estimate the promiscuity at the population level. Both analyses suggest that an unexpectedly large fraction of HLA ligands (>50%) bind two or more HLA molecules, often across supertype or even loci. These results suggest that different HLA class I molecules can nevertheless present largely overlapping peptide sets, and that “functional” HLA polymorphism on individual and population level is probably much lower than previously anticipated.  相似文献   

11.
An 11G nucleotide repeat in the 3′ UTR of FAM174A was recently postulated as a risk allele with a dominant mode of inheritance for equine metabolic syndrome (EMS) and laminitis status in Arabian horses. The objective of this project was to evaluate this hypothesis in a large and diverse across-breed population. A total of 301 ponies, 292 Morgans, 64 Arabians, 49 Tennessee Walking Horses and 59 Quarter Horses were genotyped for six observed G repeat alleles in the FAM174A 3′ UTR. Phenotype data included laminitis status, baseline insulin, glucose, non-esterified fatty acids, triglycerides, adiponectin, leptin, ACTH, insulin and glucose post oral sugar test, and two proxies for insulin resistance. The 11G allele frequencies were 18.8, 6.9, 1.8, 0.2 and 0.0% in the Arabians, Tennessee Walkers, ponies, Morgans and Quarter Horses respectively. Association analyses between FAM174A genotype and EMS phenotypes, and between allele count and EMS phenotypes, identified no statistically significant associations. When a dominant effect for the 11G allele was evaluated, a statistically significant association with adiponectin levels was identified in the ponies, and pairwise comparisons revealed that the estimated marginal means were higher in ponies with the 11G allele vs. alternative alleles (i.e. the allele had a protective effect). In conclusion, our data do not support the FAM174A 11G allele as a risk allele for EMS in our studied breeds.  相似文献   

12.
Subdivision of TF B into two variants, B1 (faster) and B2 (slower) in Australian goat breeds was accomplished by high voltage, thin layer polyacrylamide gel electrophoresis at pH 7.9. The genes controlling the caprine transferrins were shown to be autosomal codominant alleles, TFA, TFB1, TFB2 and TFC and in the various breeds of goats, the alleles were in Hardy-Weinberg equilibrium. TFA was the most common allele in the Australian and Texan Angora, Cashmere and Dairy breeds with gene frequencies ranging from 0.652 to 0.977. TFB1 and TFB2 occurred in all four breeds while TFC was only observed in very low frequencies in Australian Angora and Cashmere breeds.  相似文献   

13.
The patched gene (Ptc) is a member of the hedgehog signaling pathway which plays a central role in the development of many invertebrate and vertebrate tissues. In addition, Ptc and a number of other pathway members are mutated in some common human cancers. Patched is the receptor for the hedgehog ligand and in the mouse ablation of the Ptc gene leads to developmental defects and an embryonic lethal phenotype. Here we describe a conditional Ptc allele in mice which will have utility for the temporospatial ablation of Ptc function.  相似文献   

14.
A spontaneously occurring self-compatible mutant has been identified in Ipomoea trifida, a species possessing sporophytic self-incompatibility controlled by a single multiallelic S locus. Analysis of the segregation of compatibility/incompatibility phenotypes in selfed and crossed progenies of the self-compatible mutant plant indicated that the self-compatibility trait was caused by a mutation at the S locus; the mutated S allele was therefore designated Sc. RFLP analysis of progeny plants segregating for the Sc allele using the SSP gene (a gene linked closely to the S locus of I. trifida) as a probe confirmed that the mutation was present at the S locus. Self-incompatibility responses were examined in F1 progenies obtained from crosses between the self-compatible mutant and self-incompatible plants homozygous for one of three S alleles, S 1 , S 3 and S 22 , where the dominance relationship is S 22 >S 1 >S 3 . All F1 progeny plants from crosses with S 22 and S 1 homozygotes were self-incompatible and exhibited the respective phenotypes of each self-incompatible parent (either S 22 or S 1 ) in both stigma and pollen. However, of the F1 progeny plants from the cross with the S 3 homozygote, those carrying the genotype ScS 3 were all self-compatible and cross-compatible as both female and male parents with the S 3 homozygote. These results indicate that the dominance relationship between the four S alleles is: S 22 >S 1 >Sc>S 3 and so reveal the unexpected finding that the mutated Sc allele is dominant over a functional S 3 allele. A possible explanation for this observation is that the gene product encoded by the Sc allele confers a dominant negative effect on the S 3 gene product. Received: 21 June 2000 / Accepted: 18 July 2000  相似文献   

15.
We propose the technique of Adaptive Allele Consolidation, that greatly improves the performance of the Lange-Goradia algorithm for genotype elimination in pedigrees, while still producing equivalent output. Genotype elimination consists in removing from a pedigree those genotypes that are impossible according to the Mendelian law of inheritance. This is used to find errors in genetic data and is useful as a preprocessing step in other analyses (such as linkage analysis or haplotype imputation). The problem of genotype elimination is intrinsically combinatorial, and Allele Consolidation is an existing technique where several alleles are replaced by a single “lumped” allele in order to reduce the number of combinations of genotypes that have to be considered, possibly at the expense of precision. In existing Allele Consolidation techniques, alleles are lumped once and for all before performing genotype elimination. The idea of Adaptive Allele Consolidation is to dynamically change the set of alleles that are lumped together during the execution of the Lange-Goradia algorithm, so that both high performance and precision are achieved. We have implemented the technique in a tool called Celer and evaluated it on a large set of scenarios, with good results.  相似文献   

16.
A major challenge in the analysis of population genomics data consists of isolating signatures of natural selection from background noise caused by random drift and gene flow. Analyses of massive amounts of data from many related populations require high-performance algorithms to determine the likelihood of different demographic scenarios that could have shaped the observed neutral single nucleotide polymorphism (SNP) allele frequency spectrum. In many areas of applied mathematics, Fourier Transforms and Spectral Methods are firmly established tools to analyze spectra of signals and model their dynamics as solutions of certain Partial Differential Equations (PDEs). When spectral methods are applicable, they have excellent error properties and are the fastest possible in high dimension; see Press et al. (2007). In this paper we present an explicit numerical solution, using spectral methods, to the forward Kolmogorov equations for a Wright–Fisher process with migration of K populations, influx of mutations, and multiple population splitting events.  相似文献   

17.
Barley microsatellites: allele variation and mapping   总被引:37,自引:0,他引:37  
Microsatellites have developed into a powerful tool for mapping mammalian genomes and first reports about their use in plants have been published. A database search of 228 barley sequences from GenBank and EMBL was made to determine which simple sequence repeat (SSR) motif prevails in barley. Nearly all types of SSRs were found. The (A)n and (T)n SSRs occurred more often than (C)n and (G)n for n10. Among the dinucleotide repeats, the (CG)n SSRs occurred least often. Trinucleotide repeats did not occur with n>7 and there is no correlation between the GC content in the trinucleotide motifs and the number of observed SSRs. Analysing 15 different microsatellites with 11 barleys yielded 2.1 alleles per microsatellite. Sequencing 25 putative microsatellites showed that the resolution capacity of highquality agarose gels was sufficient to determine differences of only three base paris. Five microsatellites were mapped on three different chromosomes of a barley RFLP map.  相似文献   

18.
A forward diffusion equation describing the evolution of the allele frequency spectrum is presented. The influx of mutations is accounted for by imposing a suitable boundary condition. For a Wright-Fisher diffusion with or without selection and varying population size, the boundary condition is lim(x downward arrow0)xf(x,t)=thetarho(t), where f(.,t) is the frequency spectrum of derived alleles at independent loci at time t and rho(t) is the relative population size at time t. When population size and selection intensity are independent of time, the forward equation is equivalent to the backwards diffusion usually used to derive the frequency spectrum, but this approach allows computation of the time dependence of the spectrum both before an equilibrium is attained and when population size and selection intensity vary with time. From the diffusion equation, a set of ordinary differential equations for the moments of f(.,t) is derived and the expected spectrum of a finite sample is expressed in terms of those moments. The use of the forward equation is illustrated by considering neutral and selected alleles in a highly simplified model of human history. For example, it is shown that approximately 30% of the expected total heterozygosity of neutral loci is attributable to mutations that arose since the onset of population growth in roughly the last 150,000 years.  相似文献   

19.
The pale brown colour morph in Cepaea nemoralis appears to be determined by an allele at the C (colour) locus ( C P B). Pale brown is dominant to yellow, codominant with pink and recessive to dark brown. It is linked to the B locus (which controls the presence or absence of banding on the shell), but not to the U locus, which determines whether there is one band or five. In segregations of pale brown and yellow there is a significant deficiency of pale brown, suggesting that there are differences in viability between the morphs.  相似文献   

20.
Summary In 237 French families with cystic fibrosis (CF) restricted fragment length polymorphisms (RFLPs) were detected by two DNa probes, XV-2c and KM-19, which are tightly linked to the CF allele. As in other European populations linkage disequilibrium is found between the haplotype B (XV-2c, allele 1: KM-19, allele 2) and the CF allele. Linkage disequilibrium alters the probability that a person bearing a given haplotype is a carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号