首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of protein intake on blood pressure and cardiovascular disease   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Investigators, especially those from western countries, have commonly assumed that there is either no association or a direct association of protein intake with elevated blood pressure and atherosclerosis. In contrast, recent observational studies and clinical trials have suggested that increased protein intake, particularly protein from plant sources, might actually reduce blood pressure and prevent cardiovascular disease. RECENT FINDINGS: In epidemiological studies, an increased intake of protein has been associated with lower blood pressure and an attenuated increase in blood pressure over time. Furthermore, such studies also suggest that the beneficial effects of increased protein intake result from an increased consumption of protein from plant rather than animal sources. In several predominantly small trials, an increased intake of soy protein lowered blood pressure. With respect to clinical outcomes, reports from large cohort studies suggest that increased protein intake is associated with a reduced risk of ischemic heart disease and perhaps intraparenchymal hemorrhage. In other reports, a higher protein intake is one characteristic of a dietary pattern associated with a reduced risk of ischemic heart disease. The mechanisms by which protein could exert its beneficial effects include an increased intake of biologically active amino acids, peptides, or highly correlated nutrients. SUMMARY: Recent evidence suggests that an increased intake of protein, particularly plant protein, may lower blood pressure and reduce the risk of cardiovascular disease. However, the data are not sufficiently compelling to advocate an increased consumption of protein.  相似文献   

2.
Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C.  相似文献   

3.
Rational design of protein surface is important for creating higher order protein structures, but it is still challenging. In this study, we designed in silico the several binding interfaces on protein surfaces that allow a de novo protein–protein interaction to be formed. We used a computer simulation technique to find appropriate amino acid arrangements for the binding interface. The protein–protein interaction can be made by forming an intermolecular four-helix bundle structure, which is often found in naturally occurring protein subunit interfaces. As a model protein, we used a helical protein, YciF. Molecular dynamics simulation showed that a new protein–protein interaction is formed depending on the number of hydrophobic and charged amino acid residues present in the binding surfaces. However, too many hydrophobic amino acid residues present in the interface negatively affected on the binding. Finally, we found an appropriate arrangement of hydrophobic and charged amino acid residues that induces a protein–protein interaction through an intermolecular four-helix bundle formation.  相似文献   

4.
Immobilized and site-specifically labeled proteins are becoming invaluable tools in proteomics. Here, we describe a strategy to attach a desired protein to a solid surface in a covalent, site-specific manner. This approach employs an enzymatic posttranslational modification method to site-specifically label a target protein with an azide; an alternative substrate for protein farnesyl transferase containing an azide group was developed for this purpose. A bio-orthogonal Cu(I)-catalyzed cycloaddition reaction is then used to covalently attach the protein to agarose beads bearing an alkyne functional group. We demonstrate that both the azide incorporation and the capture steps can be performed on either a purified protein target or on a protein present within a complex mixture. This approach involves the use of a four-residue tag which is significantly smaller than most other tags reported to date and results in covalent immobilization of the target protein. Hence it should have significant applicability in protein science.  相似文献   

5.
6.
蛋白质剪切是一种翻译后修饰事件 ,它将插入前体蛋白的中间的蛋白质肽段 (Intein ,internalproteinfrag ment)剪切出来 ,并用正常肽键将两侧蛋白质多肽链 (Extein ,flankingproteinfragments)连接起来。在此过程中不需要辅酶或辅助因子的作用 ,仅需四步分子内反应。Intein及其侧翼序列可以通过突变产生高度特异性的自我切割用于蛋白质纯化、蛋白质连接和蛋白质环化反应 ,在蛋白质工程方面有广泛的应用前景。  相似文献   

7.
The Escherichia coli single-stranded DNA binding (SSB) protein is a non-sequence-specific DNA binding protein that functions as an accessory factor for the RecA protein-promoted three-strand exchange reaction. An open reading frame encoding a protein similar in size and sequence to the E. coli SSB protein has been identified in the Streptococcus pneumoniae genome. The open reading frame has been cloned, an overexpression system has been developed, and the protein has been purified to greater than 99% homogeneity. The purified protein binds to ssDNA in a manner similar to that of the E. coli SSB protein. The protein also stimulates the S. pneumoniae RecA protein and E. coli RecA protein-promoted strand exchange reactions to an extent similar to that observed with the E. coli SSB protein. These results indicate that the protein is the S. pneumoniae analog of the E. coli SSB protein. The availability of highly-purified S. pneumoniae SSB protein will facilitate the study of the molecular mechanisms of RecA protein-mediated transformational recombination in S. pneumoniae.  相似文献   

8.
Relatively few genes in the yeast Saccharornyces cerevisiae are known to contain intervening sequences. As a group, yeast ribosomal protein genes exhibit a higher prevalence of introns when compared to non-ribosomal protein genes. In an effort to quantify this bias we have estimated the prevalence of intron sequences among non-ribosomal protein genes by assessing the number of prp2-sensitive mRNAs in an in vitro translation assay. These results, combined with an updated survey of the GenBank DNA database, support an estimate of 2.5% for intron-containing non-ribosomal protein genes. Furthermore, our observations reveal an intriguing distinction between the distributions of ribosomal protein and non-ribosomal protein intron lengths, suggestive of distinct, gene class-specific evolutionary pressures.  相似文献   

9.
10.
Construction and deconstruction of bacterial inclusion bodies   总被引:15,自引:0,他引:15  
Bacterial inclusion bodies (IBs) are refractile aggregates of protease-resistant misfolded protein that often occur in recombinant bacteria upon gratuitous overexpression of cloned genes. In biotechnology, the formation of IBs represents a main obstacle for protein production since even favouring high protein yields, the in vitro recovery of functional protein from insoluble deposits depends on technically diverse and often complex re-folding procedures. On the other hand, IBs represent an exciting model to approach the in vivo analysis of protein folding and to explore aggregation dynamics. Recent findings on the molecular organisation of embodied polypeptides and on the kinetics of inclusion body formation have revealed an unexpected dynamism of these protein aggregates, from which polypeptides are steadily released in living cells to be further refolded or degraded. The close connection between in vivo protein folding, aggregation, solubilisation and proteolytic digestion offers an integrated view of the bacterial protein quality control system of which IBs might be an important component especially in recombinant bacteria.  相似文献   

11.
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.  相似文献   

12.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

13.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

14.
Spermine binding protein (SBP) is a rat ventral prostate protein that binds various polyamines, and the level of this protein and its mRNA is regulated by androgens. Previously, the cDNA for SBP was cloned and sequenced and an amino acid sequence deduced from the cDNA. Data from cloned and sequenced and an amino acid sequence deduced from the cDNA. Data from partial amino acid sequencing of the purified protein were consistent with the amino acid sequence deduced from the cDNA. However, the amino terminus of the protein was blocked, and therefore, direct protein sequence information confirming the cDNA reading frame of this region could not be obtained by Edman degradation. We have now employed an integrated approach using fast atom bombardment mass spectrometry, tandem mass spectrometry, and conventional sequencing methodologies to establish the amino-terminal sequence of the protein and to identify an amino acid sequence (35 residues) present in the purified protein but missing from the amino acid sequence deduced from cDNA clones for this protein. The missing piece of cDNA corresponds to an exon found in mouse genomic clones for a protein similar to rat SBP. Therefore, the cDNA clones for rat SBP may represent splicing variants that lack the sequence information of one exon. The blocked amino terminus of the protein was identified as 5-oxopyrrolidine-2-carboxylic acid. Mass spectrometry also provided evidence regarding glycosylation of the protein. The first of two potential glycosylation sites clearly carries carbohydrate; the second site is, at most, only partially glycosylated.  相似文献   

15.
Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.  相似文献   

16.
Leader peptidase cleaves the amino-terminal leader sequences of many secreted and membrane proteins. We have examined the function of leader peptidase by constructing an Escherichia coli strain where its synthesis is controlled by the arabinose B promoter. This strain requires arabinose for growth. When the synthesis of leader peptidase is repressed, protein precursors accumulate, including the precursors of M13 coat protein (an inner membrane protein), maltose binding protein (a periplasmic protein), and OmpA protein (an outer membrane protein). These precursors are translocated across the plasma membrane, as judged by their sensitivity to added proteinase K. However, pro-OmpA and pre-maltose binding protein are retained at the outer surface of the inner membrane. Thus, leader peptides anchor translocated pre-proteins to the outer surface of the plasma membrane and must be removed to allow their subsequent release into the periplasm or transit to the outer membrane.  相似文献   

17.
This report illustrates the complex enzymology of the multisubstrate protein phosphate that reverses most of the cyclic AMP-mediated protein phosphorylation reactions that regulate glycogen metabolism. The activity of the protein phosphatase is controlled in a dual way: it interconverts between an active and an inactive form, while the expression of its activity can furthermore be prevented by a heat-stable protein (inhibitor-1). The interconversion of the mutisubstrate protein phosphatase is made possible by the presence of a modulator protein, which constitutes the enzyme's regulatory subunit, and by the action of an activating protein, the kinase FA, which is responsible for the transition of the enzyme's catalytic subunit into its active conformation.  相似文献   

18.
The isolation of a highly purified phosphoprotein, previously named protein A, from human parotid saliva is described. This protein has an unusually high amount of glycine, proline and dicarboxylic amino acids. Together these amino acids account for 80% of all residues. The protein contains 1.9mol of P/mol of protein, probably as phosphate in an ester linkage to serine, and about 0.5% carbohydrate, but no hexosamine. The N-terminal is blocked and the following C-terminal sequence is proposed: -Aal-Asp-Ser-Gln-Gly-Arg-Arg. The sioelectric point is 4.43. The molecular weight of the protein determined by ultracentrifugation is 9900 and from chemical analyses 11000. Circular-dichrosim and nuclea-magnetic-resonance spectra indicate the absence of polyproline and triple-helical-collagen-like structure for the protein. There is little restriction on the orientation of the single phenylalanine residue in the protein., but there is also an indication of conformational restraint in the protein.  相似文献   

19.
Prion diseases such as bovine spongiform encephalopathy and Creutzfeldt-Jakob disease are fatal neurodegenerative diseases. These diseases are characterized by the conversion of a normal cellular protein, the prion protein, to an abnormal isoform that is thought to be responsible for both pathogenesis in the disease and the infectious nature of the disease agent. Understanding the biology and metabolism of the normal prion protein is therefore important for understanding the nature of these diseases. This review presents evidence for the normal function of the cellular prion protein, which appears to depend on its ability to bind copper (Cu). There is now considerable evidence that the prion protein is an antioxidant. Once the prion protein binds Cu, it may have an activity like that of a superoxide dismutase. Conversion of the prion protein to an abnormal isoform might lead to a loss of antioxidant protection that could be responsible for neurodegeneration in the disease.  相似文献   

20.
Su Y  Zou Z  Feng S  Zhou P  Cao L 《Journal of biotechnology》2007,129(3):373-382
Maximization of the soluble protein expression in Escherichia coli (E. coli) via the fusion expression strategy is usually preferred for academic, industrial and pharmaceutical purposes. In this study, a set of distinct protein fusion partners were comparatively evaluated to promote the soluble expression of two target proteins including the bovine enterokinase largely prone to aggregation and the green fluorescent protein with moderate native solubility. Within protein attributes that are putatively involved in protein solubility, the protein acidity was of particular concern. Our results explicitly indicated the protein fusion partners with a stronger acidity remarkably exhibited a higher capacity to enhance the solubility of the target proteins. Among them, msyB, an E. coli acidic protein that suppresses the mutants lacking function of protein export, was revealed as an excellent protein fusion partner with the distinguished features including high potential to enhance protein solubility, efficient expression, relatively small size and the origin of E. coli itself. In principle, our results confirmed the modified solubility model of Wilkinson-Harrison and especially deepened understanding its essence. Meanwhile, the roles of other parameters such as protein hydrophilicity in solubility enhancement were discussed, a guideline to design or search an optimum protein solubility enhancer was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号