首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large complex formation of the inhibitor of caspase-activated DNase   总被引:1,自引:0,他引:1  
Inhibitor of caspase-activated DNase (ICAD) is required for correctly folding of CAD and inhibits nuclease activity of CAD in non-apoptotic cells. From proteomic analysis of the ICAD binding proteins, we revealed that over-expressed flag-ICAD bound other ICAD molecules}. Purified recombinant ICAD protein showed three bands, 66 KDa, 132 KDa and 450 KDa, by native-PAGE. ICAD fused with glutathione-S-transferase (GST) was immunoprecipitated with anti-flag antibody from Jurkat cell lysates cotransfected with ICAD fused with either GST or flag expression vectors. When purified recombinant ICAD protein was separated by gel chromatography, the molecular weight of ICAD was detected at 440 and 45 K. ICAD in extracts of wild type Jurkat cells also existed at 440 and 45 K as measured by gel chromatography; so that fractions of CAD coincided with fractions of 440 K of ICAD. These results indicate that ICAD and/or CAD appeared to form large complexes in Jurkat cells.  相似文献   

2.
Caspase-activated DNase (CAD) is a key protein in the process of apoptosis that degrades DNA through the action of caspases. Its N-terminal region, the CAD domain (CAD-CD), is highly conserved among CAD family proteins and is responsible for the interaction with its inhibitor. We report here that CAD-CD spontaneously aggregates to form amyloid fibrils, without a lag time, under the conditions of low pH (below 4) and the presence of anions. Interestingly, the secondary structure of CAD-CD in the fibril state comprised not only beta-sheet but also alpha-helix, as found in CD, FTIR, and x-ray fiber diffraction experiments. Aromatic side chains have a defined orientation and are in the hydrophobic environment occurring with the CAD-CD fibrillogenesis. These findings provide new insights into the architecture of amyloid fibrils.  相似文献   

3.
Caspase-activated DNase (CAD) is the enzyme that causes DNA fragmentation during apoptosis. CAD forms aggregates when it is synthesized in the absence of an inhibitor of CAD (ICAD). Here, using renaturation systems of chemically denatured CAD, we report that ICAD-L, a long form of ICAD, has a chaperone-like activity specific for CAD. Murine CAD carries 14 cysteines, most of which were found to be in reduced form. Reducing agents enhanced the production of the functional CAD in an in vitro translation system. The denatured CAD could be efficiently renatured under highly reducing conditions only in the presence of ICAD-L. This process was ATP-independent. In contrast, reticulocyte lysates stimulated ICAD-L- and ATP-dependent renaturation of denatured CAD without requiring a high concentration of reducing agents. These results indicate that ICAD-L works not only as a specific inhibitor but also as a specific chaperone for CAD.  相似文献   

4.
DNA fragmentation is one of the most characteristic features of apoptotic cells and caspase-activated DNase (CAD) is considered to be a major nuclease responsible for DNA fragmentation. CAD forms a complex with its inhibitor (ICAD), which is also required for the functional folding of CAD, leading to CAD stabilization in cells. In this paper, we investigated the involvement of the ubiquitin-proteasome system in CAD stability. The expression and ubiquitination of CAD was remarkably increased by MG132 treatment in the absence of ICAD. These results suggest that CAD protein may be preferentially degraded by the ubiquitin-proteasome system in the absence of ICAD to maintain protein quality control.  相似文献   

5.
We have assessed the contribution of apoptosis-inducing factor (AIF) and inhibitor of caspase-activated DNase (ICAD) to the nuclear morphology and DNA degradation pattern in staurosporine-induced apoptosis. Expression of D117E ICAD, a mutant that is resistant to caspase cleavage at residue 117, prevented low molecular weight (LMW) DNA fragmentation, stage II nuclear morphology, and detection of terminal deoxynucleotidyl transferase staining. However, high molecular weight (HMW) DNA fragmentation and stage I nuclear morphology remained unaffected. On the other hand, expression of either D224E or wild type ICAD had no effect on DNA fragmentation or nuclear morphology. In addition, both HMW and LMW DNA degradation required functional executor caspases. Interestingly, silencing of endogenous AIF abolished type I nuclear morphology without any effect on HMW or LMW DNA fragmentation. Together, these results demonstrate that AIF is responsible for stage I nuclear morphology and suggest that HMW DNA degradation is a caspase-activated DNase and AIF-independent process.  相似文献   

6.
Caspase-activated DNase (CAD) has a compact domain at its N-terminus (CAD domain, 87 amino acid residues), which comprises one alpha-helix and five beta-strands forming a single sheet. The CAD domain of CAD (CAD-CD) forms amyloid fibrils containing alpha-helix at low pH in the presence of salt. To obtain insights into the mechanism of amyloid fibril formation, we identified the peptide region essential for fibril formation of CAD-CD and the region responsible for the salt requirement. We searched for these regions by constructing a series of deletion and point mutants of CAD-CD. Fibril formation by these CAD-CD mutants was examined by fluorescence analysis of thioflavin T and transmission electron microscopy. C-Terminal deletion and point mutation studies revealed that an aromatic residue near the C-terminus (Trp81) is critical for fibril formation. In addition, the main chain conformation of the beta5 strand, which forms a hydrophobic core with Trp81, was found to be important for the fibril formation by CAD-CD. The N-terminal 30 amino acid region containing two beta-strands was not essential for fibril formation. Rather, the N-terminal region was found to be responsible for the requirement of salt for fibril formation.  相似文献   

7.
8.
Rotenone, an inhibitor of mitochondrial complex I, induces apoptosis in a variety of cells. However, little is known about endogenous endonucleases involved in rotenone-induced DNA fragmentation, a biochemical hallmark of apoptosis. We used a chemically modified siRNA which is thought to be more effective than a non-modified siRNA to study whether caspase-activated DNase (CAD) contributes to this phenomenon. Western blot analysis showed that CAD protein decreased to 8% of control levels in human cervical carcinoma HeLa cells after a 48h transfection of siRNA. Consistent with the reduction of the protein level, the siRNA was found to inhibit rotenone-induced DNA fragmentation. These results suggest that CAD is the endogenous endonuclease that mediates internucleosomal DNA degradation in rotenone-induced apoptosis.  相似文献   

9.
The protease granzyme B (GrB) plays a key role in the cytocidal activity during cytotoxic T lymphocyte (CTL)-mediated programmed cell death. Multiple caspases have been identified as direct substrates for GrB, suggesting that the activation of caspases constitutes an important event during CTL-induced cell death. However, recent studies have provided evidence for caspase-independent pathway(s) during CTL-mediated apoptosis. In this study, we demonstrate caspase-independent and direct cleavage of the 45 kDa unit of DNA fragmentation factor (DFF45) by GrB both in vitro and in vivo. Using a novel and selective caspase-3 inhibitor, we show the ability of GrB to process DFF45 directly and mediate DNA fragmentation in the absence of caspase-3 activity. Furthermore, studies with DFF45 mutants reveal that both caspase-3 and GrB share a common cleavage site, which is necessary and sufficient to induce DNA fragmentation in target cells during apoptosis. Together, our data suggest that CTLs possess alternative mechanism(s) for inducing DNA fragmentation without the requirement for caspases.  相似文献   

10.
Ahn JY  Liu X  Liu Z  Pereira L  Cheng D  Peng J  Wade PA  Hamburger AW  Ye K 《The EMBO journal》2006,25(10):2083-2095
Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD. Depletion of Ebp1 from nuclear extracts or knockdown of Ebp1 in PC12 cells abolishes the protective effects of nerve growth factor, whereas overexpression of Ebp1 prevents apoptosis. Ebp1 (S360A), which cannot be phosphorylated by PKC, barely binds Akt or inhibits DNA fragmentation, whereas Ebp1 S360D, which mimics phosphorylation, strongly binds Akt and suppresses apoptosis. Further, phosphorylated nuclear but not cytoplasmic Akt interacts with Ebp1 and enhances its antiapoptotic action independent of Akt kinase activity. Moreover, knocking down of Akt diminishes the antiapoptotic effect of Ebp1 in the nucleus. Thus, nuclear Akt might contribute to suppressing apoptosis through interaction with Ebp1.  相似文献   

11.
We show here that co-expression of murine CAD with either ICAD-L or ICAD-S in Escherichia coli as well as mammalian cells leads to a functional DFF complex, which after caspase-3 activation releases a nucleolytically active DNase. The chaperone activity of ICAD-S is between one and two orders of magnitude less effective than that of ICAD-L, as deduced from cleavage experiments with different activated recombinant DFF complexes produced in E.coli. With nucleolytically active EGFP fusion proteins of CAD it is demonstrated that co-expression of ICAD-S, which lacks the C-terminal domain of ICAD-L, including the NLS, leads to a homogeneous intracellular distribution of the DNase in transfected cells, whereas co-expression of human or murine ICAD-L variants lacking the NLS leads to exclusion of EGFP–CAD from the nuclei in ~50% of cells. These results attribute a particular importance of the NLS in the long isoform of the inhibitor of CAD for nuclear accumulation of the DFF complex in living cells. It is concluded that ICAD-L and ICAD-S in vivo might function as tissue-specific modulators in the regulation of apoptotic DNA degradation by controlling not only the enzymatic activity but also the amount of CAD available in the nuclei of mammalian cells.  相似文献   

12.
The ability of barrier-to-autointegration factor (BAF) to bind and bridge DNA in a sequence-independent manner is crucial for its role in retroviral integration and a variety of cellular processes. To better understand this behavior, we solved the crystal structure of BAF bound to DNA. The structure reveals that BAF bridges DNA using two pairs of helix-hairpin-helix motifs located on opposite surfaces of the BAF dimer without changing its conformation.  相似文献   

13.
14.
Nonspecific endonucleases hydrolyze DNA without sequence specificity but with sequence preference, however the structural basis for cleavage preference remains elusive. We show here that the nonspecific endonuclease ColE7 cleaves DNA with a preference for making nicks after (at 3′O-side) thymine bases but the periplasmic nuclease Vvn cleaves DNA more evenly with little sequence preference. The crystal structure of the ‘preferred complex’ of the nuclease domain of ColE7 bound to an 18 bp DNA with a thymine before the scissile phosphate had a more distorted DNA phosphate backbone than the backbones in the non-preferred complexes, so that the scissile phosphate was compositionally closer to the endonuclease active site resulting in more efficient DNA cleavage. On the other hand, in the crystal structure of Vvn in complex with a 16 bp DNA, the DNA phosphate backbone was similar and not distorted in comparison with that of a previously reported complex of Vvn with a different DNA sequence. Taken together these results suggest a general structural basis for the sequence-dependent DNA cleavage catalyzed by nonspecific endonucleases, indicating that nonspecific nucleases could induce DNA to deform to distinctive levels depending on the local sequence leading to different cleavage rates along the DNA chain.  相似文献   

15.
DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB-double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3' overhang, threads behind a beta-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the beta-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.  相似文献   

16.
Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.  相似文献   

17.
A small GTPase, Arf6, is involved in cytokinesis by localizing to the Flemming body (the midbody). However, it remains unknown how Arf6 contributes to cytokinesis. Here, we demonstrate that Arf6 directly interacts with mitotic kinesin-like protein 1 (MKLP1), a Flemming body-localizing protein essential for cytokinesis. The crystal structure of the Arf6-MKLP1 complex reveals that MKLP1 forms a homodimer flanked by two Arf6 molecules, forming a 2:2 heterotetramer containing an extended β-sheet composed of 22 β-strands that spans the entire heterotetramer, suitable for interaction with a concave membrane surface at the cleavage furrow. We show that, during cytokinesis, Arf6 is first accumulated around the cleavage furrow and, prior to abscission, recruited onto the Flemming body via interaction with MKLP1. We also show by structure-based mutagenesis and siRNA-mediated knockdowns that the complex formation is required for completion of cytokinesis. A model based on these results suggests that the Arf6-MKLP1 complex plays a crucial role in cytokinesis by connecting the microtubule bundle and membranes at the cleavage plane.  相似文献   

18.
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR–DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc–DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this “druggable” target.  相似文献   

19.
To investigate the signal transduction pathway of caspase-2, cell permeable Tat-reverse-caspase-2 was constructed, characterized and utilized for biochemical and cellular studies. It could induce the cell death as early as 2 h, and caspase-2-specific VDVADase activity but not other caspase activities including DEVDase and IETDase. Interestingly, nuclear DNA fragmentation occurred and consistently DNA fragmentation factor (DFF45)/Inhibitor of caspase-activated DNase (ICAD) was cleaved inside the cell as well as in vitro, suggesting a role of caspase-2 in nuclear DNA fragmentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号