首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice deficient in surfactant protein (SP) D develop increased surfactant pool sizes and dramatic changes in alveolar macrophages and type II cells. To test the hypothesis that granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates alveolar macrophage proliferation and activation and the type II cell hypertrophy seen in SP-D null mice, we bred SP-D and GM-CSF gene-targeted mice to obtain littermate double null, single null, and wild-type mice. Bronchoalveolar lavage levels of phospholipid, protein, SP-D, SP-A, and GM-CSF were measured from 1 to 4 mo. There was an approximately additive accumulation of phospholipid, total protein, and SP-A at each time point. Microscopy showed normal macrophage number and morphology in GM-CSF null mice, numerous giant foamy macrophages and hypertrophic type II cells in SP-D null mice, and large but not foamy macrophages and mostly normal type II cells in double null mice. These results suggest that the mechanisms underlying the alveolar surfactant accumulation in the SP-D-deficient and GM-CSF-deficient mice are different and that GM-CSF mediates some of the macrophage and type II cell changes seen in SP-D null mice.  相似文献   

2.
Growth hormone plays a key role in the maturation and maintenance of the immune response, however, the effects of chronic high circulating concentrations of the hormone on the immune system is poorly understood. Transgenic mice overexpressing bovine growth hormone (b-GH) gene, fused to the rat phosphoenolpyruvate carboxykinase promoter (PEPCK), with very high plasma concentration of heterologous b-GH and their littermate normal siblings were used. Spleen cellularity, percentages of total T lymphocytes, CD4+ and CD8+ cells, ratio of T cell subpopulations, mitogen-induced lymphocyte proliferation and natural killer (NK) cell activity were examined in male transgenic mice and normal littermate mice at 2 and 6 months of age. The number of splenic lymphocytes was greater in transgenic mice than in matched normal littermates at both ages. The NK cell activity was lower in transgenic mice than in the matched normal littermates at both ages, with the lowest values found in older mice. The b-GH transgenic mice had lower percentages of T cells at both ages, however, in young transgenic mice, the percentage of CD4+ cells was reduced while percentage of CD8+ cells was increased in comparison to normal controls. Both basal and mitogen-induced proliferation capacity of splenocytes were reduced in PEPCK-b-GH-25 mice as compared to normal littermates of both ages. Proliferative indexes in response to concanavalin A and phytohemagglutinin were markedly decreased in 6 month old PEPCK-b-GH-25 mice as compared to littermate controls or younger mice. These results indicate that overexpression of b-GH in mice is associated with decreased T cell function and that these abnormalities are age-dependent.  相似文献   

3.
Transgenic mice carrying the murine granulocyte-macrophage colony stimulating factor (GM-CSF) gene expressed from a retroviral promoter exhibit elevated levels of GM-CSF in the serum, urine, peritoneal cavity, and eye. The eyes of transgenic mice are opaque, contain accumulations of macrophages, and develop retinal damage. Similarly, lesions containing macrophages develop in striated muscle. The mice also display an accumulation of large, often multinucleate, activated macrophages in the peritoneal and pleural cavities. The transgene is transcribed in peritoneal cells, as well as in eyes and infiltrated striated muscle. A high proportion of transgenic mice die with muscle wasting when aged 2-4 months, possibly because of macrophage activation resulting from the high levels of GM-CSF.  相似文献   

4.
Peripheral nerve injury is followed by Wallerian degeneration which is characterized by cellular and molecular events that turn the degenerating nerve into a tissue that supports nerve regeneration. One of these is the removal, by phagocytosis, of myelin that contains molecules which inhibit regeneration. We have recently documented that the scavenger macrophage and Schwann cells express the galactose- specific lectin MAC-2 which is significant to myelin phagocytosis. In the present study we provide evidence for a mechanism leading to the augmented expression of cell surface MAC-2. Nerve lesion causes noneuronal cells, primarily fibroblasts, to produce the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). In turn, GM- CSF induces Schwann cells and macrophages to up-regulate surface expression of MAC-2. The proposed mechanism is based on the following novel observations. GM-CSF mRNA was detected by PCR in in vitro and in vivo degenerating nerves, but not in intact nerves. The GM-CSF molecule was detected by ELISA in medium conditioned by in vitro and in vivo degenerating peripheral nerves as of the 4th h after injury. GM-CSF activity was demonstrated by two independent bioassays, and repressed by activity blocking antibodies. Significant levels of GM-CSF were produced by nerve derived fibroblasts, but neither by Schwann cells nor by nerve derived macrophages. Mouse rGM-CSF enhanced MAC-2 production in nerve explants, and up-regulated cell surface expression of MAC-2 by Schwann cells and macrophages. Interleukin-1 beta up-regulated GM-CSF production thus suggesting that injury induced GM-CSF production may be mediated by interleukin-1 beta. Our findings highlight the fact that fibroblasts, by producing GM-CSF and thereby affecting macrophage and Schwann function, play a significant role in the cascade of molecular events and cellular interactions of Wallerian degeneration.  相似文献   

5.
Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of insults. In this study, we tested the hypothesis that KGF augments pulmonary host defense. We found that a single dose of intrapulmonary KGF enhanced the clearance of Escherichia coli or Pseudomonas aeruginosa instilled into the lungs 24 h later. KGF augmented the recruitment, phagocytic activity, and oxidant responses of alveolar macrophages, including lipopolysaccharide-stimulated nitric oxide release and zymosan-induced superoxide production. Less robust alveolar macrophage recruitment and activation was observed in mice treated with intraperitoneal KGF. KGF treatment was associated with increased levels of MIP1γ, LIX, VCAM, IGFBP-6, and GM-CSF in the bronchoalveolar lavage fluid. Of these, only GM-CSF recapitulated in vitro the macrophage activation phenotype seen in the KGF-treated animals. The KGF-stimulated increase in GM-CSF levels in lung tissue and alveolar lining fluid arose from the epithelium, peaked within 1 h, and was associated with STAT5 phosphorylation in alveolar macrophages, consistent with epithelium-driven paracrine activation of macrophage signaling through the KGF receptor/GM-CSF/GM-CSF receptor/JAK-STAT axis. Enhanced bacterial clearance did not occur in response to KGF administration in GM-CSF(-/-) mice, or in mice treated with a neutralizing antibody to GM-CSF. We conclude that KGF enhances alveolar host defense through GM-CSF-stimulated macrophage activation. KGF administration may constitute a promising therapeutic strategy to augment innate immune defenses in refractory pulmonary infections.  相似文献   

6.
Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.  相似文献   

7.
It has been reported in vitro that during the respiratory burst of phagocytic cells the superoxide anion production per cell shows a negative relation with the cell density. This process has been described as autoregulation. The aim of this work was to analyze the superoxide anion production in thioglycollate-elicited peritoneal macrophage exudates to evaluate the importance of the peritoneal cavity environment in the autoregulation process. 12-O-tetradecanoylphorbol-13-acetate (PMA) was used to stimulate the respiratory burst and superoxide anion production was measured evaluating the intracellular formazan deposits that precipitate as a result of nitro blue tetrazolium (NBT) reduction. We have demonstrated a negative correlation between superoxide anion production and cell density in the peritoneal cavity in macrophages challenged with PMA. The response of individual cells was analyzed by means of an image analyzer, measuring the amount of formazan per cell and cell-size changes during the process of activation. The results revealed that the decrease in individual cell response as a function of higher cell densities were due to a significant increase in the amount of basal reaction macrophages. Concomitantly, the number of reactive cells remained unchanged irrespective of the cell density of the population. A direct correlation between cell size and superoxide anion production was observed. This phenomenon was demonstrated in SENCAR and Balb/c strains. However, macrophages from SENCAR mice showed greater superoxide anion production than those from Balb/c.The differences between strains could be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice. Based on this property, macrophages from SENCAR mice were stimulated with opsonized zymosan, a particulate stimulus that reflects the interaction macrophage-microorganism during the phagocytic process. This data will contribute to the knowledge of infection control. We conclude that variations in basal reaction cells modulates the macrophage activation response when excess macrophages are recruited to the peritoneum. This is demonstrated using different stimuli, thus suggesting that this response may be applied to a wide variety of stimuli-macrophage interactions. The differences between strains may be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice.  相似文献   

8.
Cellular cholesterol homeostasis is increasingly being recognized as an important determinant of the inflammatory status of macrophages, and a decrease in cellular cholesterol levels polarizes macrophages toward an anti-inflammatory or M2 phenotype. Cholesteryl ester hydrolase (CEH) catalyzes the hydrolysis of stored intracellular cholesteryl esters (CE) and thereby enhances free cholesterol efflux and reduces cellular CE content. We have reported earlier reduced atherosclerosis as well as lesion necrosis and improved insulin sensitivity (due to decreased adipose tissue inflammation) in macrophage-specific CEH transgenic (CEHTg) mice in the LDLR(-/-) background. In the present study, we examined the effects of reduced intracellular accumulation of CE in CEHTg macrophages in an established diabetic mouse model, namely the leptin-deficient ob/ob mouse. Macrophage-specific transgenic expression of CEH improved glucose tolerance in ob/ob-CEHTg mice significantly compared with ob/ob nontransgenic littermates, but with no apparent change in macrophage infiltration into the adipose tissue. However, there was a significant decrease in hepatic lipid accumulation in ob/ob-CEHTg mice. Consistently, decreased [(14)C]acetate incorporation into total lipids and triglycerides was noted in precision-cut liver slices from ob/ob-CEHTg mice. In the primary hepatocyte-macrophage coculture system, macrophages from CEHTg mice significantly reduced the incorporation of [(14)C]acetate into triglycerides in hepatocytes, indicating a direct effect of macrophages on hepatocyte triglyceride biosynthesis. Kupffer cells isolated from ob/ob-CEHTg mice were polarized toward an anti-inflammatory M2 (Ly6C(lo)) phenotype. Taken together, these studies demonstrate that transgenic overexpression of CEH in macrophages polarizes hepatic macrophages (Kupffer cells) to an anti-inflammatory M2 phenotype that attenuates hepatic lipid synthesis and accumulation.  相似文献   

9.
In this study, we investigated the effects of Ets2 expression on the proliferation, maturation, and survival of thymocytes by establishing transgenic mice that specifically express Ets2 or a dominant negative form of Ets2, Deltaets2, in the thymus. We show that, in young animals, there are fewer T cells in Deltaets2 transgenic thymi and that the maturation of these T cells is affected at the CD4(-)CD8(-) double-negative to CD4(+)CD8(+) double-positive transition compared with wild-type littermate mice. Partial recovery in the number of thymocytes and full T cell maturation are restored with increasing age of Deltaets2 transgenic animals. However, thymocytes from adult Deltaets2 transgenic mice cultured ex vivo are more sensitive to cell death and to glucocorticoid-induced apoptosis than are T cells from control littermate mice. We also show that T cells from adult ets2 transgenic mice proliferate faster than their wild-type littermates. The proliferation and survival of these T cells are clearly affected upon apoptotic signals: glucocorticoid-induced apoptosis induces T cells from ets2 transgenic mice to continue to proliferate in vivo and to survive better ex vivo than T cells from control littermates. It has been shown that c-Myc expression is required for thymic proliferation and improves thymocyte survival of dexamethasone-treated animals. We show that the expression of c-Myc, an Ets2 target, is elevated in T cells freshly isolated from thymi of ets2 transgenic mice pretreated with dexamethasone. Together, these results show that Ets2 plays a role in the proliferation and survival of thymocytes, implicating a Myc-dependent pathway.  相似文献   

10.
Class A scavenger receptors (SR-A) have several proposed functions that could impact atherosclerosis and inflammatory processes. To define the function of SR-A in vivo, we created C57BL/6 transgenic mice that expressed bovine SR-A under the control of the restricted macrophage promoter, lysozyme (lyso-bSR-A). bSR-A mRNA was present in cultured peritoneal macrophages of transgenic mice and tissues that contain significant macrophages including spleen, lung, and ileum. Functional overexpression of SR-A was demonstrated in peritoneal macrophages both by augmented cholesterol ester deposition in response to AcLDL and enhanced adhesion in transgenic mice compared with nontransgenic littermates. To determine whether macrophage-specific expression of bSR-A regulated inflammatory responses, granulomas were generated by subcutaneous injection of carrageenan. Granuloma size was significantly increased in lyso-bSR-A transgenic mice compared with wild-type littermates [421 +/- 51 mg (n = 11) vs. 127 +/- 22 mg (n = 10), P < 0.001]. However, the larger granulomas in lyso-bSR-A transgenic mice were only associated with an increase in unesterified cholesterol, and not cholesterol esters. Furthermore, granulomas from transgenic mice had an increase in the number of macrophages within the tissue.Therefore, macrophage expression of bSR-A increased presence of this cell type in granulomas without enhancing the deposition of cholesterol esters, consistent with a role of the adhesive property of the protein.  相似文献   

11.
Matrix metalloproteinase (MMP)-9 has been consistently identified in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, its role in the development of the disease remains undefined. Mice that specifically express human MMP-9 in their macrophages were generated, and morphometric, biochemical, and histological analyses were conducted on the transgenic and littermate control mice over 1 yr to determine the effect of macrophage MMP-9 expression on emphysema formation and lung matrix content. Lung morphometry was normal in transgenic mice at 2 mo of age (mean linear intercept = 50+/-3 littermate mice vs. 51+/-2 transgenic mice). However, after 12 mo of age, the MMP-9 transgenic mice developed significant air space enlargement (mean linear intercept = 53+/-3 littermate mice vs. 61+/-2 MMP-9 transgenic mice; P<0.04). Lung hydroxyproline content was not significantly different between wild-type and transgenic mice, but MMP-9 did significantly decrease alveolar wall elastin at 1 yr of age (4.9+/-0.3% area of alveolar wall in the littermate mice vs. 3.3+/-0.3% area of alveolar wall in the MMP-9 mice; P<0.004). Thus these results establish a central role for MMP-9 in the pathogenesis of this disease by demonstrating that expression of this protease in macrophages can alter the extracellular matrix and induce progressive air space enlargement in mice.  相似文献   

12.
Accumulation of cholesteryl ester (CE)-enriched macrophage foam cells is central to the development of atherosclerotic lesions. Intracellular CE hydrolysis is the rate-limiting step in the removal of free cholesterol from macrophage foam cells. Enhancing this process by transgenic overexpression of CE hydrolase (CEH) resulted in a significant decrease in diet-induced atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. However, for development of this step as an antiatherosclerotic target it is imperative to demonstrate that increase in CE hydrolysis after initiation of lesion formation will also attenuate further lesion progression. The objective of the present study was to directly address this issue using an animal model. LDLR-/- mice were fed a high-fat high-cholesterol diet (Western Diet) for 8 wk to initiate lesion formation and were then divided into three groups. Group 1 mice were killed to determine baseline lesion development. Mice in groups 2 and 3 were irradiated and transplanted with either LDLR-/- or LDLR-/-CEH transgenic bone marrow and maintained on Western Diet. Atherosclerotic lesion progression was assessed after 12 wk. While a more than fourfold increase in total lesions (compared to group 1) was seen in group 2 receiving LDLR-/- marrow, a significantly lower increase (<2-fold) was noted in mice reconstituted with CEH transgenic marrow (group 3). Lesions in group 3 mice were also more cellular with smaller necrotic cores. Lesion progression is associated with a switch in macrophage phenotype from anti-inflammatory M2 to proinflammatory M1 phenotype and is consistent with reduced lesion progression. Aortas from group 3 mice contained a significantly higher percentage of macrophages in M2 phenotype (Ly6C(lo)). These data demonstrate for the first time that enhancing macrophage CE hydrolysis even after lesion initiation can still attenuate further lesion progression and also switches the phenotype of lesion-associated macrophages to anti-inflammatory M2 phenotype establishing intracellular CE hydrolysis as an anti-atherosclerotic as well as anti-inflammatory target.  相似文献   

13.
cGMP-dependent protein kinase (PKG) is a multifunctional protein. Whether PKG plays a role in ischemia-reperfusion-induced kidney injury (IRI) is unknown. In this study, using an in vivo mouse model of renal IRI, we determined the effect of renal IRI on kidney PKG-I levels and also evaluated whether overexpression of PKG-I attenuates renal IRI. Our studies demonstrated that PKG-I levels (mRNA and protein) were significantly decreased in the kidney from mice undergoing renal IRI. Moreover, PKG-I transgenic mice had less renal IRI, showing improved renal function and less tubular damage compared with their wild-type littermates. Transgenic mice in the renal IRI group had decreased tubular cell apoptosis accompanied by decreased caspase 3 levels/activity and increased Bcl-2 and Bag-1 levels. In addition, transgenic mice undergoing renal IRI demonstrated reduced macrophage infiltration into the kidney and reduced production of inflammatory cytokines. In vitro studies showed that peritoneal macrophages isolated from transgenic mice had decreased migration compared with control macrophages. Taken together, these results suggest that PKG-I protects against renal IRI, at least in part through inhibiting inflammatory cell infiltration into the kidney, reducing kidney inflammation, and inhibiting tubular cell apoptosis.  相似文献   

14.
The hemopoietic growth and differentiation regulators, granulocyte-macrophage colony-stimulating factor (GM-CSF) and the multipotential stimulating factor (multi-CSF) have been shown to have major effects on the effector function of mature macrophages. In this study we have examined the effect of recombinant GM-CSF and multi-CSF expressed transiently from recombinant vaccinia virus, or constitutively in GM-CSF transgenic mice on the development of cutaneous leishmaniasis, caused by Leishmania major in genetically susceptible or resistant mice. We observed no effect on the development of lesions when GM-CSF or multi-CSF were administered before infection, nor on the healing of lesions when they were administered after appearance of lesions. Although only some of the GM-CSF transgenic mice or their normal littermates developed lesions after infection with L. major, there was no difference between the groups in the rate of lesion development or in the size of lesions.  相似文献   

15.
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.  相似文献   

16.
Atherosclerosis is a complex chronic inflammatory disease in which macrophages play a critical role, and the intervention of the inflammatory process in atherogenesis could be a therapeutic strategy. In this study, we investigated the efficacy of xenogenic macrophage immunization on the atherosclerotic lesion formation in a model of murine atherosclerosis. Apolipoprotein E knockout (apoE-KO) mice were repeatedly immunized with formaldehyde-fixed cultured human macrophages (phorbol ester-stimulated THP-1 cells), using human serum albumin as a control protein or HepG2 cells as human control cells, once a week for four consecutive weeks. The vehicle phosphate-buffered saline was injected in the nonimmunized controls. THP-1 immunization induced antibodies that are immunoreactive with mouse macrophages. Although the plasma lipid levels were unchanged by the immunization, the atherosclerotic lesion area in the aortic root was significantly reduced by >50% in 16-wk-old THP-1-immunized apoE-KO mice compared with that in control mice. THP-1 immunization reduced in vivo macrophage infiltration, reduced in vitro macrophage adhesion, and changed cytokine production by macrophages to the antiatherogenic phenotype. Xenogenic macrophage immunization protects against the development of atherosclerosis in apoE-KO mice by modulating macrophage function in which antibodies induced by the immunization are likely to be involved. This method is a novel and potentially useful cell-mediated immune therapeutic technique against atherosclerosis. antibody; THP-1 cells  相似文献   

17.
18.
M Peled-Kamar  J Lotem  E Okon  L Sachs    Y Groner 《The EMBO journal》1995,14(20):4985-4993
The copper-zinc superoxide dismutase (CuZnSOD) gene resides on chromosome 21 and is overexpressed in Down syndrome (DS) patients. Transgenic CuZnSOD mice with elevated levels of CuZnSOD were used to determine whether, as in DS, overexpression of CuZnSOD was also associated with thymus and bone marrow abnormalities. Three independently derived transgenic CuZnSOD strains had abnormal thymi showing diminution of the cortex and loss of corticomedullary demarcation, resembling thymic defects in children with DS. Transgenic CuZnSOD mice were also more sensitive than control mice to in vivo injection of lipopolysaccharide (LPS), reflected by an earlier onset and enhanced apoptotic cell death in the thymus. This higher susceptibility to LPS-induced apoptosis was associated with an increased production of hydrogen peroxide and a higher degree of lipid peroxidation. When cultured under suboptimal concentrations of interleukin 3 or in the presence of tumour necrosis factor, bone marrow cells from transgenic CuZnSOD mice produced 2- to 3-fold less granulocyte and macrophage colonies than control. The results indicate that transgenic CuZnSOD mice have certain thymus and bone marrow abnormalities which are similar to those found in DS patients, and that the defects are presumably due to an increased oxidative damage resulting in enhanced cell death by apoptosis.  相似文献   

19.
Murine resident peritoneal macrophages (RPM) generate superoxide (O2-) in response to stimulation with PMA or zymosan. Murine bone marrow-derived macrophages (BMM) generate O2- in response to zymosan but not PMA. However, the ability to generate O2- in response to PMA could be induced in BMM by pre-exposing the cells to certain cytokines, including granulocyte-macrophage CSF (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), IFN-gamma, and, to a lesser extent, IL-1 alpha. Bacterial LPS also induced the ability to respond to PMA. These same agents were also shown to prime RPM for enhanced PMA-induced respiratory burst. In contrast to GM-CSF, CSF-1 did not enhance the ability of BMM or RPM to generate O2- in response to PMA. Pretreatment with GM-CSF or TNF-alpha did not significantly affect the zymosan-induced release of O2- by BMM. These results suggest that unprimed BMM have a deficiency in the PMA-dependent signaling pathway that is corrected by exposure to selected cytokines. The results also raise the possibility that the basal ability of tissue macrophages to generate a respiratory burst in response to PMA may be a reflection of in vivo exposure to cytokines.  相似文献   

20.
Mammalian immune responses to Trypanosoma brucei infection are important to control of the disease. In rats infected with T. brucei gambiense (Wellcome strain; WS) or T. brucei brucei (interleukin-tat 1.4 strain [ILS]), a marked increase in the number of macrophages in the spleen can be observed. However, the functional repercussions related to this expansion are not known. To help uncover the functional significance of macrophages in the context of trypanosome infection, we determined the mRNA levels of genes associated with an increase in macrophage number or macrophage function in WS- and ILS-infected rats and in cultured cells. Specifically, we assayed mRNA levels for macrophage colony stimulating factor (M-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage migration inhibitory factor (MIF). Upregulation of GM-CSF and MIF mRNA levels was robust in comparison with changes in M-CSF levels in ILS-infected rats. By contrast, upregulation of M-CSF was more robust in WS-infected rats. The phagocytic activity in macrophages harvested from ILS-infected rat spleens, but not WS-infected spleens, was higher than that in macrophages from uninfected rats. These results suggest that macrophages of WS-infected rats change to an immunosuppressive type. However, when WS or ILS is cocultured with spleen macrophages or HS-P cells, a cell line of rat macrophage origin, M-CSF is upregulated relative to GM-CSF and MIF in both cell types. Anemia occurs in ILS-, but not WS-infected, rats. Treatment of spleen macrophages or HS-P cells cocultured with ILS with cobalt chloride, which mimics the effects of anemia-induced hypoxia, led to downregulation of M-CSF mRNA levels, upregulation of GM-CSF and MIF, and an increase in phagocytic activity. However, the effect of cobalt chloride on spleen macrophages and HS-P cells cocultured with WS was restricted. These results suggest that anemia-induced hypoxia in ILS-infected rats stimulates the immune system and activates macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号