首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of the host by Toxoplasma gondii leads to an acute systemic dissemination of tachyzoites, followed by a chronic phase, in which bradyzoites, enclosed in cysts, persist in the brain, the heart, and other tissues. Among putative vaccine candidates, the bradyzoite antigens BAG1 and MAG1 look promising since they are preferentially expressed during the chronic stage of the parasite. This work focused on studying the immunogenicity of bradyzoite antigens in a mouse model of chronic toxoplasmosis. A mixture of plasmids directing the cytoplasmic expression of MAG1 and BAG1 in mammalian cells was used to immunize mice. We show here that immunized mice developed, preferentially, specific anti-MAG1 and anti-BAG1 IgG2a subclass antibodies, indicating a shift towards a Th1-like response after DNA immunization. We then demonstrated that DNA immunization followed by challenge infection elicited effective protection in mice, suggesting that bradyzoite antigens should be considered in the design of vaccines against toxoplasmosis.  相似文献   

2.
We previously reported that Neospora caninum can be induced to express BAGI, a bradyzoite antigen, within 3 days of culture under stress conditions. The main goals of the present experiment were to increase the expression of BAGI in vitro (in part by extending cultures for 9 days), to observe parasitophorous vacuoles at various points of stage differentiation, and to test the ability of organisms produced in vitro to function like mature bradyzoites. Expression of BAG1 and of a tachyzoite antigen (NcSAGI) was monitored using a double-label immunofluorescence assay. For the purpose of this study, organisms expressing NcSAG1 were designated as tachyzoites, those expressing BAG1 were designated as bradyzoites, and those expressing both antigens were designated as intermediate zoites. The greatest percentage of intermediate zoites and bradyzoites (14%) occurred in bovine monocytes maintained for 9 days. These bradyzoites did not appear to be functionally mature; they did not induce patent infections in dogs. in contrast to bradyzoites that were produced in chronically infected mice. In vitro, large parasitophorous vacuoles contained either a pure population of tachyzoites or a mixture of tachyzoites and intermediate zoites, which is indicative of asynchronous stage conversion of organisms within a vacuole. Bradyzoites were first observed within small vacuoles on day 6. and bradyzoites never shared vacuoles with tachyzoites. This finding suggests that vacuoles containing bradyzoites may develop only if the cell is invaded by a zoite that has already begun bradyzoite differentiation. An alternative possibility is that cysts may develop if the establishing tachyzoite undergoes bradyzoite differentiation before multiplying. Cysts do not appear to arise from transformation of tachyzoites within large parasitophorous vacuoles.  相似文献   

3.
Toxoplasmic encephalitis is caused by reactivation of bradyzoites to rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immunocompromised hosts. Diagnosis of this life-threatening disease is problematic, because it is difficult to discriminate between these 2 stages. Toxoplasma PCR assays using gDNA as a template have been unable to discriminate between an increase or decrease in SAG1 and BAG1 expression between the active tachyzoite stage and the latent bradyzoite stage. In the present study, real-time RT-PCR assay was used to detect the expression of bradyzoite (BAG1)- and tachyzoite-specific genes (SAG1) during bradyzoite/tachyzoite stage conversion in mice infected with T. gondii Tehran strain after dexamethasone sodium phosphate (DXM) administration. The conversion reaction was observed in the lungs and brain tissues of experimental mice, indicated by SAG1 expression at day 6 after DXM administration, and continued until day 14. Bradyzoites were also detected in both organs throughout the study; however, it decreased at day 14 significantly. It is suggested that during the reactivation period, bradyzoites not only escape from the cysts and reinvade neighboring cells as tachyzoites, but also converted to new bradyzoites. In summary, the real-time RT-PCR assay provided a reliable, fast, and quantitative way of detecting T. gondii reactivation in an animal model. Thus, this method may be useful for diagnosing stage conversion in clinical specimens of immunocompromised patients (HIV or transplant patients) for early identification of tachyzoite-bradyzoite stage conversion.  相似文献   

4.
The apicomplexan parasite Toxoplasma gondii has the ability to switch between a rapidly replicating tachyzoite and a slowly dividing encysted bradyzoite within its intermediate hosts such as humans or other warm-blooded vertebrates. It is likely that in vivo, the tachyzoites differentiate into encysted bradyzoites in response to the immune system attack during disease progression. As part of a developmental strategy and, in order to survive within infected hosts, T. gondii tachyzoites undergo profound metabolic and morphological changes by differentiating into encysted bradyzoites. Bradyzoites are characterised by their resistance to both the immune system and chemotherapy. The stimulus that triggers Toxoplasma encystation and the molecular mechanisms triggering the switch from tachyzoite to bradyzoite remain unknown. It is very important to elucidate these mechanisms since bradyzoites within tissue cysts are not only the source of infection transmitted from domestic animals to humans, but can also be converted into tachyzoites that are the cause of fatal toxoplasmic encephalitis in acquired immunodeficiency syndrome patients. In this review, I focus on recent efforts towards the characterisation of genes that encode several stage-specific isoenzymes. The picture emerging from these studies is that stage-specific expression of isoenyzmes having different biochemical properties accompanies the interconversion of tachyzoite into bradyzoite, and vice versa. It can be hypothesised that the difference found between these enzymatic activities may be instrumental in maintaining some major parasitic metabolisms such as glycolysis in pace with the stage-specific requirements of carbohydrate or polysaccharide biosynthesis.  相似文献   

5.
Autofluorescence of Toxoplasma gondii and Neospora caninum cysts in vitro   总被引:2,自引:0,他引:2  
Autofluorescence of Toxoplasma gondii and Neospora caninum was studied by fluorescence microscopy during their differentiation from tachyzoites to bradyzoites in vitro using Vero as host cells. Stage conversion into bradyzoites and cysts was confirmed by immunofluorescent microscopy and Western blot analysis using SAG1- and BAG1-specific antibody, respectively. From day 4 postinfection (PI), pale blue autofluorescence of the bradyzoites and tissue cysts was observed with UV light at 330-385 nm, which coincided with the onset of cyst development. This autofluorescence under UV light of bradyzoites and tissue cysts increased in intensity from days 8 to 10 PI. In contrast to the autofluorescence shown by bradyzoites and cysts, tachyzoites and parasitophorous vacuoles containing tachyzoites never autofluoresced at any time examined. Autofluorescence of the cystic stages was of sufficient intensity and duration to allow the detection of cysts and bradyzoites of T. gondii and N. caninum. In this study, we describe for the first time the autofluorescence properties of in vitro-induced bradyzoites and cysts of T. gondii and N. caninum.  相似文献   

6.
7.
Two forms of the protozoan parasite Toxoplasma gondii are associated with intermediate hosts such as humans: rapidly growing tachyzoites are responsible for acute illness, whereas slowly dividing encysted bradyzoites can remain latent within the tissues for the life of the host. In order to identify genetic factors associated with parasite differentiation, we have used a strong bradyzoite-specific promoter (identified by promoter trapping) to drive the expression of T. gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) in stable transgenic parasites, providing a stage-specific positive/negative selectable marker. Insertional mutagenesis has been carried out on this parental line, followed by bradyzoite induction in vitro and selection in 6-thioxanthine to identify misregulation mutants. Two different mutants fail to induce the HXGPRT gene efficiently during bradyzoite differentiation. These mutants are also defective in other aspects of differentiation: they replicate well under bradyzoite growth conditions, lysing the host cell monolayer as effectively as tachyzoites. Expression of the major bradyzoite antigen BAG1 is reduced, and staining with Dolichos biflorus lectin shows reduced cyst wall formation. Microarray hybridizations show that these mutants behave more like tachyzoites at a global level, even under bradyzoite differentiation conditions.  相似文献   

8.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

9.
Infection of humans by Toxoplasma gondii leads to an acute systemic phase, in which tachyzoites disseminate throughout the body, followed by a chronic phase characterized by the presence of tissue cysts, containing bradyzoites, in brain, heart and skeletal muscles. This work focused on studying the antigenic regions of bradyzoite-specific proteins involved in human B- and T-cell responses. To this aim, we constructed a phage-display library of DNA fragments derived from the bradyzoite-specific genes BAG1, MAG1, SAG2D, SAG4, BSR4, LDH2, ENO1 and p-ATPase. Challenge of the bradyzoite library with sera of infected individuals led to the identification of antigenic regions within BAG1 and MAG1 gene products. Analysis of the humoral and lymphoproliferative responses to recombinant antigens demonstrated that the BAG1 fragment induced T-cell proliferation in 34% of T. gondii-exposed individuals, while 50% of them had specific IgG. In the same subjects, the MAG1 fragment was recognized by T cells from 17% of the exposed donors and by antibodies from 73% of them. A detailed analysis of the antibody response against BAG1 and MAG1 antigen fragments demonstrated that the immune response against bradyzoites occurs early after infection in humans. Finally, we provide evidence that the T-cell response against BAG1 is associated with the production of interferon-gamma, suggesting that bradyzoite antigens should be considered in the design of potential vaccines in humans.  相似文献   

10.
11.
An important event in the pathogenesis of toxoplasmosis is the interconversion between the bradyzoite and the tachyzoite stage of Toxoplasma gondii within the intermediate host. The factors that influence either cyst formation (bradyzoites) or reactivation (tachyzoites) are unknown. Uwe Gross, Wolfgang Bohne, Martine Soête and Jean Fran?ois Dubremetz here describe current knowledge about the mechanisms that might lead to the induction of stage differentiation of this protozoan parasite.  相似文献   

12.
ABSTRACT. The development of Toxoplasma gondii was studied in mice fed bradyzoites. At one hour after oral inoculation (HAI), bradyzoites were found in cells of the surface epithelium and the lamina propria of the small intestine, primarily the ileum. Division into two tachyzoites was first observed at 18 HA1 in the intestine. At 24 HAI, organisms were also seen in mesenteric lymph nodes. Organisms were first detected in the brain at six days after oral inoculation with bradyzoites (DAI) but not consistently until 10 DAI. Immunohistochemical staining with bradyzoite specific (BAG-5 antigen) anti-serum showed that bradyzoites retained their BAG-5 reactivity even after the first division into two tachyzoites in the intestine at 18 HAL BAG-5 positive organisms were not seen 2–5 DAI. BAG-5 antigens reappeared in T. gondii at 6 DAI. Whole mice and individual tissues of mice fed bradyzoites were bioassayed in cats and mice for the presence of bradyzoites. Feces of cats fed murine tissues were examined for oocyst shedding for short prepatent periods. Bradyzoites were present in the intestines of mice up to 12 HA1 but not at 18 HAI, and tachyzoites and not bradyzoites disseminated to other tissues from the intestine. Bradyzoites were again detected 6 DAI. Using the mouse bioassay, T. gondii was first detected in peripheral blood at 24 HA1 and more consistently at 48 HAL Using a pepsin-digestion procedure and mouse bioassay, organisms were demonstrated in many tissues of mice 15 and 49 DAI.  相似文献   

13.
Parasite differentiation is commonly associated with transitions between complex life cycle stages and with long-term persistence in the host, and it is therefore critical for pathogenesis. In the protozoan parasite Toxoplasma gondii, interconversion between rapidly growing tachyzoites and latent encysted bradyzoites is accompanied by numerous morphological and metabolic adaptations. In order to explore early cell biological events associated with this differentiation process, we have exploited fluorescent reporter proteins targeted to various subcellular locations. Combining these markers with efficient in vitro differentiation and time-lapse video microscopy provides a dynamic view of bradyzoite development in living cultures, demonstrating subcellular reorganization, maintenance of the mitochondrion, and missegregation of the apicoplast. Bradyzoites divide asynchronously, using both endodyogeny and endopolygeny, and are highly motile both within and between host cells. Cysts are able to proliferate without passing through an intermediate tachyzoite stage, via both the migration of free bradyzoites and the fission of bradyzoite cysts, suggesting a mechanism for dissemination during chronic infection.  相似文献   

14.
The bradyzoite stage of the Apicomplexan protozoan parasite Toxoplasma gondii plays a critical role in maintenance of latent infection. We reported previously the cloning of a bradyzoite-specific gene BAG1/hsp30 (previously referred to as BAG5) encoding a cytoplasmic antigen related to small heat shock proteins. We have now disrupted BAG1 in the T. gondii PLK strain by homologous recombination. H7, a cloned null mutant, and Y8, a control positive for both cat and BAG1, were chosen for further characterization. Immunofluorescence and Western blot analysis of bradyzoites with BAG1 antisera demonstrated expression of BAG1 in the Y8 and the PLK strain but no expression in H7. All three strains expressed a 116 kDa bradyzoite cyst wall antigen, a 29 kDa matrix antigen and the 65 kDa matrix reactive antigen MAG1. Mice inoculated with H7 parasites formed significantly fewer cysts than those inoculated with the Y8 and the PLK strains. H7 parasites were complemented with BAG1 using phleomycin selection. Cyst formation in vivo for the BAG1-complemented H7 parasites was similar to wild-type parasites. We therefore conclude that BAG1 is not essential for cyst formation, but facilitates formation of cysts in vivo.  相似文献   

15.
16.
Toxoplasma gondii has a complex life cycle involving definite (cat) and intermediate (all warm blooded animals) hosts. This gives rise to four infectious forms each of which has a distinctive biological role. Two (tachyzoite and merozoite) are involved in propagation within a host and two (bradyzoite and sporozoite) are involved in transmission to new hosts. The various forms can be identified by their structure, host parasite relationship and distinctive developmental processes. In the present in vivo study, the various stages have been evaluated by electron microscopy and immunocytochemistry using a panel of molecular markers relating to surface and cytoplasmic molecules, metabolic iso-enzymes and secreted proteins that can differentiate between tachyzoite, bradyzoite and coccidian development. Tachyzoites were characterised as being positive for surface antigen 1, enolase isoenzyme 2, lactic dehydrogenase isoenzyme 1 and negative for bradyzoite antigen 1. In contrast, bradyzoites were negative for SAG1 but positive for BAG1, ENO1 and LDH2. When stage conversion was followed in brain lesion at 10 and 15 days post-infection, tachyzoites were predominant but a number of single intermediate organisms displaying tachyzoite and certain bradyzoite markers were observed. At later time points, small groups of organisms displaying only bradyzoite markers were also present. A number (9) of dense granule proteins (GRA1-8, NTPase) have also been identified in both tachyzoites and bradyzoites but there were differences in their location during parasite development. All the dense granule proteins extensively label the parasitophorous vacuole during tachyzoite development. In contrast the tissue cyst wall displays variable staining for the dense granule proteins, which also expresses an additional unique cyst wall protein. The molecular differences could be identified at the single cell stage consistent with conversion occurring at the time of entry into a new cell. These molecular differences were reflected in the structural differences in the parasitophorous vacuoles observed by electron microscopy. Stage conversion to enteric (coccidian) development was limited to the enterocytes of the cat small intestine. Although no specific markers were available, this form of development can be identified by the absence of specific tachyzoite (SAG1) and bradyzoite (BAG1) markers although the isoenzymes ENO2 and LHD1 were expressed. There was also a significant difference in the expression of the dense granule proteins. The coccidian stages and merozoites only expressed two (GRA7 and NTPase) of the nine dense granule proteins and this was reflected in significant differences in the structure of the parasitophorous vacuole. The coccidian stages also undergo conversion from asexual to sexual development. The mechanism controlling this process is unknown but does not involve any change in the host cell type or parasitophorous vacuole and may be pre-programmed, since the number of asexual cycles was self-limiting. In conclusion, it was possible using a combination of molecular markers to identify tachyzoite, bradyzoite and coccidian development in tissue sections.  相似文献   

17.
Tissue cysts of parasites of the genus Hammondia are rarely described in naturally or experimentally infected intermediate hosts. However, ultrastructural examinations on tissue cyst stages of Hammondia sp. are needed, e.g. to compare these stages with those of Neospora caninum and other related parasites. We describe a cell culture system employed to examine the in vitro development of tissue cysts of a Hammondia sp.-like parasite (isolate FOX 2000/1) which uses the European fox as a definitive host. Cells of a diploid finite cell line from embryonal bovine heart (KH-R; CCLV, RIE 090) were infected by inoculation of sporozoites und cultivated for up to 3 months. Transmission electron microscopic examination of 17 day old cell culture material revealed the presence of cyst walls. Infected cell cultures cultivated for 2 months were used to feed a fox. Six to 13 days post infection the fox shed large numbers (n=1.2 x 10(7)) of Hammondia-sp. like oocysts which could not be distinguished from those used to infect the cell culture as determined by DNA sequencing of the internal transcribed spacer 1 and the D2/D3 domain of the large subunit ribosomal DNA. To find out the proportion of parasitophorous vacuoles that had developed into tissue cysts, the expression of bradyzoite markers was examined by probing infected cell cultures with mouse polyclonal antibodies against Toxoplasma gondii bradyzoite antigen 1 (anti-BAG1) and rat monoclonal antibodies against a cyst wall protein (mAbCC2). Nineteen and 90 days post infection all parasitophorous vacuoles in the cell cultures were positive with anti-BAG1 and mAbCC2. This shows that biologically viable (i.e. infectious) tissue cysts of a fox-derived Hammondia sp. isolate (FOX 2000/1) can be efficiently produced in this cell culture system. Since in vitro cystogenesis of dog-derived Hammondia heydorni has not been observed yet, in vitro cyst formation might be one trait to separate fox-derived Hammondia sp. from H. heydorni on a species level.  相似文献   

18.
Neospora caninum is an apicomplexan parasite identified as a major cause of abortion in cattle and neurological disease in various animal species. It is closely related to Toxoplasma gondii, sharing the ability to persist indefinitely in latent stage within the host as a tissue cyst containing slow-dividing bradyzoites. In this study, we compared different stress methods to induce in vitro bradyzoite conversion, using MARC-145 cells infected with Nc-Liverpool isolate. The tachyzoite-to-bradyzoite conversion rate was monitored at days 3, 5, and 7 after stress in a double-immunofluorescence assay using a monoclonal antibody against the tachyzoite antigen SAG1 (alphaSAG1) and a rabbit serum directed to the intracytoplasmic bradyzoite antigen BAG1 (alphaBAG1). Seven days of treatment with 70 microM sodium nitroprusside offered the highest bradyzoite transformation rate and the best yield of total parasitophorous vacuoles observed. In the present work, we introduce an alternative, simplified, and more advantageous method for bradyzoite production of N. caninum, using a reliable cell culture system easy to handle and with promising capacity of parasite purification.  相似文献   

19.
Toxoplasmic encephalitis (TE) is caused by reactivation of dormant bradyzoites into rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immune-compromised hosts. Diagnosis of this life-threatening disease is complicated, since it is difficult to distinguish between these two stages. It is, therefore, mainly based on a test positive for T. gondii antibodies, and specific clinical symptoms. We developed a duplex RT-PCR to detect the expression of bradyzoite (BAG1) and tachyzoite (SAG1) specific genes simultaneously during tachyzoite/bradyzoite stage conversion. The conversion reaction was observed in many organs of experimental mice, indicated by tachyzoites in the cerebrum, cerebellum, heart and lung, beginning in week 1 after the suppression period, and continuing until the end. Bradyzoites were also detected in nearly all organs throughout the study, suggesting that during the reactivation period, bradyzoites not only escape from cysts and reinvade neighboring cells as tachyzoites, but are also driven into developing new bradyzoites. The results of our study show that duplex RT-PCR is an easy, rapid, sensitive, and reproducible method, which is particularly valuable when numerous samples must be analyzed. This technique may usefully serve as an alternate tool for diagnosing TE in severely immunocompromised patients.  相似文献   

20.
Neospora caninum is a recently identified apicomplexan protozoan parasite that is closely related to Toxoplasma gondii. Neospora caninum is of significant economic importance as it causes neurological disease and abortion in numerous animals. Antibodies to BAG1/hsp30 (also known as BAG5), a T. gondii bradyzoite-specific protein, have been demonstrated to react with N. caninum tissue cysts in vivo. Bradyzoite differentiation of N. caninum in vitro was investigated using culture conditions previously utilised for T. gondii in vitro bradyzoite development. Utilising the NC-Liverpool isolate of N. caninum, cyst-like structures developed within 3-4 days of culture of this parasite in human fibroblasts. In addition, an antigen reacting with mAb 74.1.8 (anti-BAG1) and rabbit anti-recombinant BAGI was demonstrable by immunofluorescence, fluorescence-activated cell sorter, and immunoblot analyses. Expression of this antigen was increased by stress conditions, similar to that which has been described for T. gondii bradyzoite induction. Cyst-wall formation in vitro, as assayed by lectin binding, did not occur as readily for N. caninum as it does for T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号