首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach is proposed for determining common RNA secondary structures within a set of homologous RNAs. The approach is a combination of phylogenetic and thermodynamic methods which is based on the prediction of optimal and suboptimal secondary structures, topological similarity searches and phylogenetic comparative analysis. The optimal and suboptimal RNA secondary structures are predicted by energy minimization. Structural comparison of the predicted RNA secondary structures is used to find conserved structures that are topologically similar in all these homologous RNAs. The validity of the conserved structural elements found is then checked by phylogenetic comparison of the sequences. This procedure is used to predict common structures of ribonuclease P (RNAase P) RNAs.  相似文献   

2.
R Lück  S Grf    G Steger 《Nucleic acids research》1999,27(21):4208-4217
A tool for prediction of conserved secondary structure of a set of homologous single-stranded RNAs is presented. For each RNA of the set the structure distribution is calculated and stored in a base pair probability matrix. Gaps, resulting from a multiple sequence alignment of the RNA set, are introduced into the individual probability matrices. These 'aligned' probability matrices are summed up to give a consensus probability matrix emphasizing the conserved structural elements of the RNA set. Because the multiple sequence alignment is independent of any structural constraints, such an alignment may result in introduction of gaps into the homologous probability matrices that disrupt a common consensus structure. By use of its graphical user interface the presented tool allows the removal of such misalignments, which are easily recognized, from the individual probability matrices by optimizing the sequence alignment with respect to a structural alignment. From the consensus probability matrix a consensus structure is extracted, which is viewable in three different graphical representations. The functionality of the tool is demonstrated using a small set of U7 RNAs, which are involved in 3'-end processing of histone mRNA precursors. Supplementary Material lists further results obtained. Advantages and drawbacks of the tool are discussed in comparison to several other algorithms.  相似文献   

3.
Non-coding RNAs (ncRNAs) are regulatory molecules encoded in the intergenic or intragenic regions of the genome. In prokaryotes, biocomputational identification of homologs of known ncRNAs in other species often fails due to weakly evolutionarily conserved sequences, structures, synteny and genome localization, except in the case of evolutionarily closely related species. To eliminate results from weak conservation, we focused on RNA structure, which is the most conserved ncRNA property. Analysis of the structure of one of the few well-studied bacterial ncRNAs, 6S RNA, demonstrated that unlike optimal and consensus structures, suboptimal structures are capable of capturing RNA homology even in divergent bacterial species. A computational procedure for the identification of homologous ncRNAs using suboptimal structures was created. The suggested procedure was applied to strongly divergent bacterial species and was capable of identifying homologous ncRNAs.  相似文献   

4.
Functionally homologous RNA sequences can substantially diverge in their primary sequences but it can be reasonably assumed that they are related in their higher-degree structures. The problem to find such structures and simultaneously satisfy as far as possible the free-energy-minimization criterion, is considered here in two aspects. Firstly a quantitative measure of the folding consensus among secondary structures is defined, translating each structure into a linear representation and using the correlation theorem to compare them. Secondly an algorithm for the parallel search for secondary structures according to the free-energy-minimization criterion, but with a filtering action on the basis of the folding consensus measure is presented. The method is tested on groups of RNA sequences different in origin and in functions, for which proposals of homologous secondary structures based on experimental data exist. A comparison of the results with a blank consisting of a search on the basis of the free energy minimization alone is always performed. In these tests the method shows its ability in obtaining, from different sequences, secondary structures characterized by a high-folding consensus measure also when lower free energy but not homologous structures are possible. Two applications are also shown. The first demonstrates the transfer of experimental data available for one sequence, to a functionally related and therefore homologous one. The second application is the possibility of using a topological probe in the search for precise structural motifs.  相似文献   

5.
An RNA homologous to U2 RNA and a single copy gene encoding the RNA homolog have been characterized in the microsporidian, Vairimorpha necatrix. The RNA which is 165 nucleotides in length possesses significant similarity to U2 RNA, particularly in the 5' half of the molecule. The U2 homolog contains the highly conserved GUAGUA branch point binding sequence seen in all U2 RNAs except those of the trypanosomes. A U2 RNA sequence element implicated in a U2:U6 RNA intermolecular pairing is also present in the U2 homolog. The V. necatrix U2 RNA homolog differs at positions previously found to be invariant in U2 RNAs and appears to lack an Sm binding site sequence. The RNA can be folded into a secondary structure possessing three of the four principal stem-loops proposed for the consensus U2 RNA structure. A cis-diol containing cap structure is present at the 5' end of the U2 homolog. Unlike the cap structures seen in U-snRNAs and mRNAs it is neither 2,2,7-trimethylguanosine, gamma-monomethyl phosphate, nor 7-methylguanosine.  相似文献   

6.
Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.  相似文献   

7.
U2 RNA shares a structural domain with U1, U4, and U5 RNAs.   总被引:49,自引:9,他引:40       下载免费PDF全文
C Branlant  A Krol  J P Ebel  E Lazar  B Haendler    M Jacob 《The EMBO journal》1982,1(10):1259-1265
We previously reported common structural features within the 3'-terminal regions of U1, U4, and U5 RNAs. To check whether these features also exist in U2 RNA, the primary and secondary structures of the 3'-terminal regions of chicken, pheasant, and rat U2 RNAs were examined. Whereas no difference was observed between pheasant and chicken, the chicken and rat sequences were only 82.5% homologous. Such divergence allowed us to propose a unique model of secondary structure based on maximum base-pairing and secondary structure conservation. The same model was obtained from the results of limited digestion of U2 RNA with various nucleases. Comparison of this structure with those of U1, U4, and U5 RNAs shows that the four RNAs share a common structure designated as domain A, and consisting of a free single-stranded region with the sequence Pu-A-(U)n-G-Pup flanked by two hairpins. The hairpin on the 3' side is very stable and has the sequence Py-N-Py-Gp in the loop. The presence of this common domain is discussed in connection with relationships among U RNAs and common protein binding sites.  相似文献   

8.
Structural elements in RNA molecules have a distinct nucleotide composition, which changes gradually over evolutionary time. We discovered certain features of these compositional patterns that are shared between all RNA families. Based on this information, we developed a structure prediction method that evaluates candidate structures for a set of homologous RNAs on their ability to reproduce the patterns exhibited by biological structures. The method is named SPuNC for ‘Structure Prediction using Nucleotide Composition’. In a performance test on a diverse set of RNA families we demonstrate that the SPuNC algorithm succeeds in selecting the most realistic structures in an ensemble. The average accuracy of top-scoring structures is significantly higher than the average accuracy of all ensemble members (improvements of more than 20% observed). In addition, a consensus structure that includes the most reliable base pairs gleaned from a set of top-scoring structures is generally more accurate than a consensus derived from the full structural ensemble. Our method achieves better accuracy than existing methods on several RNA families, including novel riboswitches and ribozymes. The results clearly show that nucleotide composition can be used to reveal the quality of RNA structures and thus the presented technique should be added to the set of prediction tools.  相似文献   

9.
We have characterized a new member (U19) of a group of mammalian small nuclear RNAs that are not precipitable with antibodies against fibrillarin, a conserved nucleolar protein associated with most of the small nucleolar RNAs characterized to date. Human U19 RNA is 200 nucleotides long and possesses 5'-monophosphate and 3'-hydroxyl termini. It lacks functional boxes C and D, sequence motifs required for fibrillarin binding in many other snoRNAs. Human and mouse RNA are 86% homologous and can be folded into similar secondary structures, a finding supported by the results of nuclease probing of the RNA. In the human genome, U19 RNA is encoded in the intron of an as yet not fully characterized gene and could be faithfully processed from a longer precursor RNA in HeLa cell extracts. During fractionation of HeLa cell nucleolar extracts on glycerol gradients, U19 RNA was associated with higher-order structures of approximately 65S, cosedimenting with complexes containing 7-2/MRP RNA, a conserved nucleolar RNA shown to be involved in 5.8S rRNA processing in yeast cells.  相似文献   

10.
K Han  H J Kim 《Nucleic acids research》1993,21(5):1251-1257
We have developed an algorithm and a computer program for simultaneously folding homologous RNA sequences. Given an alignment of M homologous sequences of length N, the program performs phylogenetic comparative analysis and predicts a common secondary structure conserved in the sequences. When the structure is not uniquely determined, it infers multiple structures which appear most plausible. This method is superior to energy minimization methods in the sense that it is not sensitive to point mutation of a sequence. It is also superior to usual phylogenetic comparative methods in that it does not require manual scrutiny for covariation or secondary structures. The most plausible 1-5 structures are produced in O(MN2 + N3) time and O(N2) space, which are the same requirements as those of widely used dynamic programs based on energy minimization for folding a single sequence. This is the first algorithm probably practical both in terms of time and space for finding secondary structures of homologous RNA sequences. The algorithm has been implemented in C on a Sun SparcStation, and has been verified by testing on tRNAs, 5S rRNAs, 16S rRNAs, TAR RNAs of human immunodeficiency virus type 1 (HIV-1), and RRE RNAs of HIV-1. We have also applied the program to cis-acting packaging sequences of HIV-1, for which no generally accepted structures yet exist, and propose potentially stable structures. Simulation of the program with random sequences with the same base composition and the same degree of similarity as the above sequences shows that structures common to homologous sequences are very unlikely to occur by chance in random sequences.  相似文献   

11.
12.
The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time.  相似文献   

13.
Preparations of chicken, rat and human nuclear 5S RNA contain two sets of molecules. The set with the lowest electrophoretic mobility (5Sa) contains RNAs identical or closely related to ribosomal 5S RNA from the corresponding animal species. In HeLa cells and rat brain, we only detected an RNA identical to the ribosomal 5S RNA. In hen brain and liver, we found other species differing by a limited number of substitutions. The results suggest that mutated 5S genes may be expressed differently according to the cell type. The set with the highest mobility corresponds to U5 RNA. In both rat brain and HeLa cells, U5 RNA was found to be composed of 4 and 5 different molecules respectively (U5A, U5B1-4) differing by a small number of substitutions or insertions. In hen brain, no U5B was detected but U5A' differing from U5A by the absence of the 3'-terminal adenosine. All the U5 RNAs contain the same set of modified nucleotides. They also have the same secondary structure which consists of two hairpins joined together by a 17 nucleotide long single-stranded region. The 3' half of the molecule has a compact conformation. Together, the results suggest that U5 RNAs are transcribed from a multigene family and that mutated genes may be expressed as far as secondary structure is conserved. The conformation of U5 RNA is likely to be related to its function and it is of interest to mention that several similarities of structure are found between U5 and U1A RNA.  相似文献   

14.
We have cloned the single-copy gene for the trans -spliceosomal U5 snRNA from the trypanosomatid species Leptomonas seymouri, using U5 RNA affinity selection and cDNA cloning. Sequence comparison revealed that the trans -spliceosomal U5 RNAs from trypanosomatid species share certain characteristic features. Interestingly, the affinity selection procedure yielded-in addition to the bona fide U5 RNA-a closely related small RNA, which can be folded into the same secondary structure, but carries three changes in the loop sequence. This raises the possibility that there may be a larger family of U5-like RNAs in trypanosomes. To study the U5 snRNP assembly and function in trypanosomes we have established a stable expression system in L.seymouri. Two cell lines have been generated that express U5 RNAs with mutations in the Sm site, resulting in a defect of core snRNP formation. In addition, the U5 Sm-mutant RNAs behaved differently in cell fractionation, implying a defect in nuclear localization. In sum, this demonstrates for the first time that the Sm site of trypanosome snRNAs contributes an essential element for stable core RNP assembly and may be important for nuclear localization, in analogy to the Sm site function of cis -spliceosomal snRNAs in higher eucaryotes.  相似文献   

15.
16.
Comparative structure analysis of vertebrate ribonuclease P RNA.   总被引:6,自引:0,他引:6       下载免费PDF全文
Ribonuclease P cleaves 5'-precursor sequences from pre-tRNAs. All cellular RNase P holoenzymes contain homologous RNA elements; the eucaryal RNase P RNA, in contrast to the bacterial RNA, is catalytically inactive in the absence of the protein component(s). To understand the function of eucaryal RNase P RNA, knowledge of its structure is needed. Considerable effort has been devoted to comparative studies of the structure of this RNA from diverse organisms, including eucaryotes, primarily fungi, but also a limited set of vertebrates. The substantial differences in the sequences and structures of the vertebrate RNAs from those of other organisms have made it difficult to align the vertebrate sequences, thus limiting comparative studies. To expand our understanding of the structure of diverse RNase P RNAs, we have isolated by PCR and sequenced 13 partial RNase P RNA genes from 11 additional vertebrate taxa representing most extant major vertebrate lineages. Based on a recently proposed structure of the core elements of RNase P RNA, we aligned the sequences and propose a minimum consensus secondary structure for the vertebrate RNase P RNA.  相似文献   

17.
Facing the ever-growing list of newly discovered classes of functional RNAs, it can be expected that further types of functional RNAs are still hidden in recently completed genomes. The computational identification of such RNA genes is, therefore, of major importance. While most known functional RNAs have characteristic secondary structures, their free energies are generally not statistically significant enough to distinguish RNA genes from the genomic background. Additional information is required. Considering the wide availability of new genomic data of closely related species, comparative studies seem to be the most promising approach. Here, we show that prediction of consensus structures of aligned sequences can be a significant measure to detect functional RNAs. We report a new method to test multiple sequence alignments for the existence of an unusually structured and conserved fold. We show for alignments of six types of well-known functional RNA that an energy score consisting of free energy and a covariation term significantly improves sensitivity compared to single sequence predictions. We further test our method on a number of non-coding RNAs from Caenorhabditis elegans/Caenorhabditis briggsae and seven Saccharomyces species. Most RNAs can be detected with high significance. We provide a Perl implementation that can be used readily to score single alignments and discuss how the methods described here can be extended to allow for efficient genome-wide screens.  相似文献   

18.
We have recently shown that isoalloxazine derivatives are able to photocleave RNA specifically at G.U base pairs embedded within a helical stack. The reaction involves the selective molecular recognition of G.U base pairs by the isoalloxazine ring and the removal of one nucleoside downstream of the uracil residue. Divalent metal ions are absolutely required for cleavage. Here we extend our studies to complex natural RNA molecules with known secondary and tertiary structures, such as tRNAs and a group I intron (td). G.U pairs were cleaved in accordance with the phylogenetically and experimentally derived secondary and tertiary structures. Tandem G.U pairs or certain G.U pairs located at a helix extremity were not affected. These new cleavage data, together with the RNA crystal structure, allowed us to perform molecular dynamics simulations to provide a structural basis for the observed specificity. We present a stable structural model for the ternary complex of the G. U-containing helical stack, the isoalloxazine molecule and a metal ion. This model provides significant new insight into several aspects of the cleavage phenomenon, mechanism and specificity for G. U pairs. Our study shows that in large natural RNAs a secondary structure motif made of an unusual base pair can be recognized and cleaved with high specificity by a low molecular weight molecule. This photocleavage reaction thus opens up the possibility of probing the accessibility of G.U base pairs, which are endowed with specific structural and functional roles in numerous structured and catalytic RNAs and interactions of RNA with proteins, in folded RNAs.  相似文献   

19.
We suggest a new algorithm to search a given set of the RNA sequences for conserved secondary structures. The algorithm is based on alignment of the sequences for potential helical strands. This procedure can be used to search for new structured RNAs and new regulatory elements. It is efficient for the genome-scale analysis. The results of various tests run with this algorithm are shown.  相似文献   

20.
We suggest a new algorithm to search a given set of the RNA sequences for conserved secondary structures. The algorithm is based on alignment of the sequences for potential helical strands. This procedure can be used to search for new structured RNAs and new regulatory elements. It is efficient for the genome-scale analysis. The results of various tests run with this algorithm are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号