首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine adrenocortical lysosomes were characterized by differential centrifugation, acid hydrolase contents, latency of cathepsin D, release of bound acid hydrolases in soluble form, and isopycnic density gradient centrifugation. Cathepsins D and B, beta-N-acetylglucosaminidase, beta-galactosidase and arylsulphatase were found exclusively in the lysosomes, while alpha-mannosidase and beta-glucuronidase were in both the lysosomal and microsomal fractions. The activity of cathepsin D was remarkably high, amounting to more than 6 times that in porcine liver and to more than 10 times that in liver of Sprague-Dawley rats in terms of units per g wet tissue. Porcine adrenocortical lysosomes showed a modal isopycnic density value of 1.155, but mitochondria a value of 1.145. The validity of these values was studied by investigating the possibilities of agglutination of organelles, damage to lysosomal membranes, disruption of mitochondria due to the hydrostatic pressure and by applying the same procedures of isopycnic centrifugation to hog and rat livers. After these validity tests, porcine adrenocortical lysosomes were concluded to be unique in their strikingly high content of cathepsin D as well as in their low modal isopycnic density which is very close to that of porcine adrenocortical mitochondria.  相似文献   

2.
Our recent studies have shown that cathepsin L is first synthesized as an enzymatically inactive proform in endoplasmic reticulum and is successively converted into an active form during intracellular transport and we postulated that aspartic proteinases would be responsible for the intracellular propeptide-processing step of procathepsin L accompanied by the activation of enzyme (Y. Nishimura, T. Kawabata, and K. Kato (1988) Arch. Biochem. Biophys. 261, 64-71). To better understand this proposed mechanism, we investigated the effect of pepstatin, a potent inhibitor of aspartic proteinases, on the intracellular processing kinetics of cathepsin L analyzed by pulse-chase experiments in vivo with [35S]methionine in the primary cultures of rat hepatocytes. In the pepstatin-treated cells, the proteolytic conversion of cellular procathepsin L of 39 kDa to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 5-h chase periods. Further, the subcellular fractionation experiments demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the light density microsomal fraction after 2 h of chase. These results suggest that pepstatin treatment caused a significant inhibitory effect on the intracellular processing and also on the intracellular movement of procathepsin L from the endoplasmic reticulum to the lysosomes. These findings provide the first evidence showing that aspartic proteinase may play an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo. Therefore, we suggest that cathepsin D, a major lysosomal aspartic proteinase, is more likely to be involved in this proposed model in the lysosomes.  相似文献   

3.
Effects of bafilomycin A1, an inhibitor of vacuolar H(+)-ATPase, on the synthesis and processing of cathepsin D and cathepsin H were investigated in primary cultured rat hepatocytes. Pulse-chase experiments showed that after being synthesized as procathepsin D and procathepsin H the precursors were converted into mature forms in the control cells as the chase time elapsed. However, in the presence of 5 x 10(-7) M of bafilomycin A1, both precursors were largely secreted into the medium and no mature forms were found within the cells. Thus bafilomycin A1 mimics lysosomotropic amines with regard to perturbation of the targeting of lysosomal acid hydrolases. In contrast, bafilomycin A1 was found not to inhibit processings of proalbumin and procomplement component 3, which are thought to occur at the acidic trans-Golgi, implying that the proteolytic event of the proproteins is not sensitive to an increase of intra-Golgi pH. The results suggest that bafilomycin A1 is useful as a pH-perturbant to study the role of acidity in living cells.  相似文献   

4.
Human monocytes and macrophages synthesize lysosomal enzymes as larger precursors. The polypeptide patterns of several lysosomal-enzyme precursors and their mature forms are similar to those observed in human fibroblasts. Like fibroblasts, the monocytes and macrophages release small amounts of lysosomal-enzyme precursors. The lysosomotropic NH4+ cation enhances this release. In contrast, zymosan, a degranulating agent, causes release of both the mature and the precursor forms of the lysosomal enzymes. Both NH4Cl and zymosan inhibit maturation of the precursors. The fractional amounts of mature cathepsin D and beta-hexosaminidase released in the presence of zymosan are strikingly different. Probably, in the macrophages several lysosomal organelles are packaged with different relative contents of lysosomal enzymes. The transport of the precursors of cathepsin D into lysosomes is inhibited by tunicamycin. Therefore oligosaccharide side chains are likely to function as signals in packaging of lysosomal enzymes in macrophages also.  相似文献   

5.
Cathepsin B, a lysosomal cysteine protease, is synthesized as a glycoprotein with two N-linked oligosaccharide chains, one of which is in the propeptide region while the other is in the mature region. When cultured rat hepatocytes were labeled with [(32)P]phosphate, (32)P-labeled cathepsin B was immunoprecipitated only in the proform from cell lysates and medium. Either Endo H or alkaline phosphatase treatment of (32)P-labeled procathepsin B demonstrated the acquisition of a mannose 6-phosphate (Man 6-P) residue on high mannose type oligosaccharides. To identify the site of phosphorylation, immunoisolated (35)S- or (32)P-labeled procathepsin B was incubated with purified lysosomal cathepsin D, since cathepsin D cleaves 48 amino acid residues from the N-terminus of procathepsin B, in which one N-linked oligosaccharide chain was also included [Kawabata, T. et al. (1993) J. Biochem. 113, 389-394]. Treatment of intracellular (35)S-labeled procathepsin B with a molecular mass of 39-kDa with cathepsin D resulted in the production of the 31-kDa intermediate form, but the (32)P-label incorporated into procathepsin B disappeared after treatment with cathepsin D. These results indicate that the phosphorylation of procathepsin B is restricted to an oligosaccharide chain present in the propeptide region. Interestingly, cathepsin B sorting to lysosomes was not inhibited by NH(4)Cl treatment and about 90% of the intracellular procathepsin B initially phosphorylated was secreted into the medium without being dephosphorylated intracellularly, and did not bind significantly to cation-independent-Man 6-P receptor, suggesting the failure of Man 6-P-dependent transport of procathepsin B to lysosomes. Additionally, about 50% of the newly synthesized (35)S-labeled cathepsin B was retained in the cells in mature forms consisting of a 29-kDa single chain form and a 24-kDa two chain form, while part of the procathepsin B was associated with membranes in a Man 6-P-independent manner. Taken together, these results show that in rat hepatocytes, cathepsin B is targeted to lysosomes by an alternative mechanism(s) other than the Man 6-P-dependent pathway.  相似文献   

6.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

7.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

8.
The impact of an altered endocytic environment on the biogenesis of lysosomes was studied in fibroblasts of patients suffering from sialic acid storage disease (SASD). This inherited disorder is characterized by the accumulation of acidic monosaccharides in lysosomal compartments and a concomitant decrease of their buoyant density. We demonstrate that C-terminal trimming of the lysosomal cysteine proteinase cathepsin B is inhibited in SASD fibroblasts. This late event in the biosynthesis of cathepsin B normally takes place in mature lysosomes, suggesting an impaired biogenesis of these organelles in SASD cells. When normal fibroblasts are loaded with sucrose, which inhibits transport from late endosomes to lysosomes, C-terminal cathepsin B processing is prevented to the same extent. Further characterization of the terminal endocytic compartments of SASD cells revealed properties usually associated with late endosomes/prelysosomes. In addition to a decreased buoyant density, SASD "lysosomes" show a reduced acidification capacity and appear smaller than their normal counterparts. We conclude that the accumulation of small non-diffusible compounds within endocytic compartments interferes with the formation of mature lysosomes and that the acidic environment of the latter organelles is a prerequisite for C-terminal processing of lysosomal hydrolases.  相似文献   

9.
The presence of procathepsin D, a zymogen of the soluble lysosomal aspartic proteinase cathepsin D, was detected in rat milk using Western blot analysis and assay of proteolytic activity in acidic buffers. No other forms of cathepsin D were found. Two different polyclonal anti-procathepsin D antibodies were used for immunochemical detection of procathepsin D. Both antibodies we found to recognize rat procathepsin D. Proteolytic activity in acidic buffers was detected using a fluorogenic substrate specific for cathepsin D and was abolished by pepstatin A, a specific inhibitor of aspartic proteinases. This study represents third demonstration of presence of procathepsin D in mammal breast milk. Potential sources and physiological functions are discussed.  相似文献   

10.
In order to study the intracellular localization of the proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D in cultured human skin fibroblasts we have used incubation with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap) as described by Jadot et al. [Jadot, M., Colmant, C., Wattiaux-de Coninck, S. & Wattiaux, R. (1984) Biochem. J. 219,965-970] for the specific lysis of lysosomes. When a homogenate of fibroblasts was incubated for 20 min with 0.5 mM Gly-Phe-NH-Nap, a substrate for the lysosomal enzyme cathepsin C, the latency of the lysosomal enzymes alpha-glucosidase and beta-hexosaminidase decreased from 75% to 10% and their sedimentability from 75% to 20-30%. In contrast, treatment with Gly-Phe-NH-Nap had no significant effect on the latency of galactosyltransferase, a marker for the Golgi apparatus, and on the sedimentability of glutamate dehydrogenase and catalase, markers for mitochondria and peroxisomes, respectively. The maturation of alpha-glucosidase and cathepsin D in fibroblasts was studied by pulse-labelling with [35S]methionine, immunoprecipitation, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and fluorography. When homogenates of labelled fibroblasts were incubated with Gly-Phe-NH-Nap prior to immunoprecipitation, 70-80% of all proteolytically processed forms of metabolically labelled alpha-glucosidase and cathepsin D was recovered in the supernatant. The earliest proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D appeared to be coupled to their transport to the lysosomes. Although both enzymes are transported via the mannose-6-phosphate-specific transport system, the velocity with which they arrived in the lysosomes was consistently different. Whereas newly synthesized cathepsin D was found in the lysosomes 1 h after synthesis, alpha-glucosidase was detected only after 2-4 h. When a pulse-chase experiment was carried out in the presence of 10 mM NH4Cl there was a complete inhibition of the transport of cathepsin D and a partial inhibition of that of alpha-glucosidase to the lysosomes. Leupeptin, an inhibitor of lysosomal thiol proteinases, had no effect on the transport of labelled alpha-glucosidase to the lysosomes. However, the early processing steps in which the 110-kDa precursor is converted to the 95-kDa intermediate form of the enzyme were delayed, a transient 105-kDa form was observed and the conversion of the 95-kDa intermediate form to the 76-kDa mature form of the enzyme was completely inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The purpose of the present investigation was twofold: The isolation of Kupffer cell lysosomes by changing their density in vivo through uptake of colloidal silver iodide (NeosilvolR), and the characterization of the isolated fraction. No significant changes in the activities or distribution of acid phosphatase, aryl sulphatase, and cathepsin D were found after the injection of NeosilvolR. A method is presented for the isolation of silver-loaded lysosomes from rat liver Kupffer cells by means of ultracentrifugation in sucrose gradients. Morphological and biochemical data indicate that the lysosomal fraction was contaminated with other subcellular organelles only to a minor degree. The lysosomal fraction showed non-parallel enrichment of various acid hydrolases, with the highest degree of purification found for aryl sulphatase and the lowest for acid phosphatase. The lysosomal enzyme activity pattern was similar to that found in Kupffer cell preparations.  相似文献   

12.
Processing of human cathepsin D in lysosomes in vitro   总被引:7,自引:0,他引:7  
The proteolytic maturation of cathepsin D polypeptides was studied in lysosomes isolated from metabolically labeled fibroblasts. In lysosomes isolated from fibroblasts labeled with [35S]methionine, 70-95% of labeled cathepsin D polypeptides were represented by a Mr = 47,000 polypeptide after a 20-min pulse and 75-min chase. When these lysosomes were incubated in vitro, up to 70% of the Mr = 47,000 polypeptide was processed to mature cathepsin D polypeptides. The processing was dependent on the integrity of the lysosomes, had an optimum between pH 6 and 7, and could be stimulated by dithiothreitol and ATP. The noncleavable ATP analogue, adenosine 5'-(beta, gamma-imido)triphosphate, and GTP, CTP, and UTP could not substitute for ATP. The ATP-dependent stimulation was associated with an acidification of lysosomes. It was inhibited by agents that dissipate the lysosomal pH gradient (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, N,N'-dicyclohexylcarbodiimide, nigericin, NH4Cl). A stimulatory effect of ATP was observed also at pH 5.5. The stimulation at pH 5.5 was not associated with acidification of lysosomes and was resistant to protonophores. Inhibitors of lysosomal cysteine proteinases and N-ethylmaleimide inhibited the processing. In the presence of ATP the processing activity was partially protected from inhibition by N-ethylmaleimide. In conclusion, the maturation of cathepsin D in lysosomes depends on cysteine proteinases and is stimulated by the ATP-driven acidification of lysosomes. In addition, ATP stimulates maturation at pH 5.5 by a mechanism not involving the proton pump.  相似文献   

13.
Effect of brefeldin A on the transport of lysosomal acid hydrolases (cathepsins D and H) was investigated in primary cultured rat hepatocytes. Both cathepsins were synthesized as proenzymes and progressively converted to mature enzymes in the control cells. However, BFA strongly inhibited the appearance of the mature enzymes in the cells in a dose dependent manner, suggesting that transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes is blocked by the drug. The inhibitory effect by brefeldin A was reversible. Upon recovery from brefeldin A-intoxication, procathepsin D was effectively targeted into lysosomes, whereas a substantial amount of procathepsin H was found to be missorted, resulting in its secretion into the culture medium.  相似文献   

14.
Low temperature blocks transport and sorting of cathepsin D in fibroblasts   总被引:2,自引:0,他引:2  
The transport of newly synthesized cathepsin D in fibroblasts at 16-28 degrees C was compared to that at 37 degrees C. At 37 degrees C newly synthesized cathepsin D passes the trans Golgi within 30-60 min, becomes segregated from the secretory route into prelysosomal organelles within 1-2 h and processed to mature forms in dense lysosomes within 1.5-3 h after synthesis. The small fraction of cathepsin D that escapes transport into lysosomes is secreted within less than 2 h. At 16-28 degrees C the transport of cathepsin D to lysosomes is inhibited in a temperature-dependent manner. At 16-28 degrees C cathepsin D precursors are slowly transported to the trans Golgi. The cathepsin D precursors accumulate at a site that is in continuity with the secretory pathway and located within or distal of the trans Golgi and proximal to the site where cathepsin D precursors leave the secretory pathway as complexes with mannose 6-phosphate receptors. The arrest at this site is not complete. The receptor-dependent segregation of the cathepsin D precursors released from the block is impaired at less than or equal to 26 degrees C. The inhibition of segregation results in an increased, albeit retarded secretion of cathepsin D. The fraction of cathepsin D precursors that is segregated from the secretory pathway encounters a further low temperature block in prelysosomal organelles. There cathepsin D precursors are proteolytically processed to an intermediate form, which accumulates transiently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lysosomal proteinases are translated as preproforms, transported through the Golgi apparatus as proforms, and localized in lysosomes as mature forms. In this study, we analyzed which subclass of proteinases participates in the processing of lysosomal proteinases using Bafilomycin A1, a vacuolar ATPase inhibitor. Bafilomycin A1 raises lysosomal pH resulting in the degradation of lysosomal proteinases such as cathepsins B, D, and L. Twenty-four hours after the withdrawal of Bafilomycin A1, NIH3T3 cells possess these proteinases in amounts and activities similar to those in cells cultured in DMEM and 5% BCS. In the presence of various proteinase inhibitors, procathepsin processing is disturbed by E-64-d, resulting in abnormal processing of cathepsins D and L, but not by APMSF, Pepstatin A, or CA-074. In the presence of Helicobacter pylori Vac A toxin, which prevents vesicular transport from late endosomes to lysosomes, the processing of procathepsins B and D occurs, while that of procathepsin L does not. Thus, procathepsins B and D are converted to their mature forms in late endosomes, while procathepsin L is processed to the mature form after its arrival in lysosomes by some cysteine proteinase other than cathepsin B.  相似文献   

16.
Biosynthesis, transport, and maturation of cathepsin D and beta-hexosaminidase was examined in fibroblasts exposed to 1-deoxynojirimycin, a glucose analogue known to inhibit trimming glucosidases (Saunier, B., Kilker, R. D., Jr., Tkacz, J. S., Quaroni, A., and Herscovics, A. (1982) J. Biol. Chem. 257, 14155-14161; Hettkamp, H., Bause, E., and Legler, G. (1982) Biosci. Rep. 2, 899-906). Cells treated with 1-deoxynojirimycin contained precursors of cathepsin D and beta-hexosaminidase larger by about 1-2 kDa than control cells. The shift in molecular size was probably due to glucose residues that were rapidly removed from the precursors in the absence but not in the presence of 1-deoxynojirimycin. In addition, 1-deoxynojirimycin inhibited the glycosylation of the beta-chain precursor of beta-hexosaminidase and the synthesis of glycoproteins, including that of cathepsin D. The proteolytic processing of the larger precursors was retarded by several hours. The delay in proteolytic maturation was secondary to the accumulation of the larger precursors in organelles, which fractionated with membranes of the endoplasmic reticulum and Golgi complex. The accumulated cathepsin D precursor contained neither mannose 6-phosphate residues nor complex type oligosaccharides, which are formed in the cis and trans aspects of the Golgi complex. Cathepsin D precursors eventually released from the site of accumulation were apparently deglucosylated, acquired mannose 6-phosphate residues and complex type oligosaccharides, and were transferred into lysosomes as efficiently as in control cells. Our results suggest that transport of cathepsin D from the endoplasmic reticulum to the Golgi complex depends on removal of glucose residues from its carbohydrate.  相似文献   

17.
We have examined the distribution of the cation-independent mannose 6-phosphate receptor and five acid hydrolases in early and late endosomes and a receptor-recycling fraction isolated from livers of estradiol-treated rats. Enrichment of mannose 6-phosphate receptor mass relative to that of crude liver membranes was comparable in membranes of early and late endosomes but was even greater in membranes of the receptor-recycling fraction. Enrichment of acid hydrolase activities (aryl sulfatase, N-acetyl-beta-glucosaminidase, tartrate-sensitive acid phosphatase, and cholesteryl ester acid hydrolase) and cathepsin D mass was also comparable in early and late endosomes but was considerably lower in the receptor-recycling fraction. The enrichment of two acid hydrolases, acid phosphatase and cholesteryl ester acid hydrolase, in endosomes was severalfold greater than that of the other three examined, about 40% of that found in lysosomes. Acid phosphatase and cholesteryl ester acid hydrolase were partially associated with endosome membranes, whereas cathepsin D was found entirely in the endosome contents. These findings raise the possibility that lysosomal enzymes traverse early endosomes during transport to lysosomes in rat hepatocytes and suggest that the greater enrichment of some acid hydrolases in endosomes is related to their association with endosome membranes. Despite the substantial enrichment of lysosomal enzymes in hepatocytic endosomes, we found that two, cholesteryl ester acid hydrolase and cathepsin D, did not degrade cholesteryl esters and apolipoprotein B-100 of endocytosed low density lipoproteins in vivo, presumably because they are inactive at the pH within endosomes.  相似文献   

18.
Upon detergent or hypo-osmotic lysis of CHO-cell postnuclear supernatants or isolated lysosomes at pH 4.8, the lysosomal enzymes beta-hexosaminidase, beta-galactosidase, alpha-fucosidase and cathepsin C were readily pelleted, whereas the exogenous marker, long-term-internalized horseradish peroxidase, was not. Salt or pH elevation greatly decreased lysosomal-enzyme pelletability. The results suggest that, under native conditions, lysosomal hydrolases may be aggregated. Aggregation could promote enzyme retention within the organelle.  相似文献   

19.
Mouse leukemia L1210 cells contain lysosomes, but cathepsin D, a typical lysosomal enzyme, has an unusual localization. After fractionation of homogenates of L1210 cells by isopycnic density gradient centrifugation, most of the activity for all of the acid hydrolases studied, except cathepsin D, is sedimentable and shows a similar density distribution around a peak having a modal density of 1.16. In contrast, much more of the total activity for cathepsin D is not sedimentable, while the sedimentable activity has a distribution around a peak at a higher density of 1.18. After chromatography on Sephadex G-100 of cell extracts, two molecular weight forms of cathepsin D are found. One has an apparent molecular weight of approx. 45,000, similar to rat liver cathepsin D, while the apparent molecular weight of the second form is approx. 95,000. Both forms are 4-5 times more active than rat liver cathepsin D. The high molecular weight L1210 cathepsin D converts to the low molecular weight form with no loss in activity after treatment with beta-mercaptoethanol. In all respects the unusual intracellular localization and molecular weight forms of cathepsin D in mouse leukemia L1210 cells are similar to the situation found for rat thoracic duct lymphocytes.  相似文献   

20.
Mouse leukemia L1210 cells contain lysosomes, but cathepsin D, a typical lysosomal enzyme, has an unusual localization. After fractionation of homogenates of L1210 cells by isopynic density gradient centrifugation, most of the activity for all of the acid hydrolases studied, except cathepsin D, is sedimentable and shows a similar density distribution around a peak having a modal density of 1.16. In contrast, much more of the total activity for cathepsin D is not sedimentable, while the sedimentable activity has a distribution around a peak at a higher density of 1.18.After chromatography on Sephadex G-100 of cell extracts, two molecular weight forms of cathepsin D are found. One has an apparent molecular weight of approx. 45 000, similar to rat liver cathepsin D, while the apparent molecular weight of the second form is approx. 95 000. Both forms are 4–5 times more active than rat liver cathepsin D. The high molecular weight L1210 cathepsin D converts to the low molecular weight form with no loss activity after treatment with β-mercaptoethanol. In all respects the unusual intracellular localization and molecular weight forms of cathepsin D in mouse luekemia L1210 cells are similar to the situation found for rat thoratic duct lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号