首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.  相似文献   

2.
Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability.  相似文献   

3.
Some properties (molecular weight, pI, temperature stability, action of selected inhibitors, substrate specificity and pH-activity dependence) of two not yet known cathepsins from rat liver lysosomes are compared with the properties of the known cathepsin B1. Cathepsin L is a thiolproteinase, has a molecular weight of 23--24000 and a pI of 5,8--6,1. By disc electrophoresis and isoelectric focusing there appear several protein bands which all have enzymatic activity. Leupeptin behaves as a strong inhibitor. The pH-optimum for digestion of proteins is close to 5,0. Cathepsin L does not hydrolyse esters and splits synthetic low molecular substrates only to a low degree. Cathepsin L stored in presence of glutathion and EDTA in liquid nitrogen kept its activity for some months. Cathepsin H is an aminopeptidase as well as an endopeptidase. An enzyme with these bifunctional properties was detected up to now only in E. coli but not in animal cells. Cathepsin H is a thiol-enzyme with a molecular weight of 28000 and a pI of 7,1. Strong inhibitors are leucyl-chlormethan and SH-blocking substances. Leupeptin shows only a weak inhibitory effect to this enzyme compared to its action on cathepsins L and B1. The pH-optimum for hydrolysis of all substrates is 6.0. Cathepsin H splits proteins, amino acid derivatives and selected N-protected amino acid derivatives. Cathepsin H compared to cathepsin L and B1 is quite temperature stable.  相似文献   

4.
Cystatin F is a recently discovered type II cystatin expressed almost exclusively in immune cells. It is present intracellularly in lysosome-like vesicles, which suggests a potential role in regulating papain-like cathepsins involved in antigen presentation. Therefore, interactions of cystatin F with several of its potential targets, cathepsins F, K, V, S, H, X and C, were studied in vitro. Cystatin F tightly inhibited cathepsins F, K and V with Ki values ranging from 0.17 nM to 0.35 nM, whereas cathepsins S and H were inhibited with 100-fold lower affinities (Ki approximately 30 nM). The exopeptidases, cathepsins C and X were not inhibited by cystatin F. In order to investigate the biological significance of the inhibition data, the intracellular localization of cystatin F and its potential targets, cathepsins B, H, L, S, C and K, were studied by confocal microscopy in U937 promonocyte cells. Although vesicular staining was observed for all the enzymes, only cathepsins H and X were found to be colocalized with the inhibitor. This suggests that cystatin F in U937 cells may function as a regulatory inhibitor of proteolytic activity of cathepsin H or, more likely, as a protection against cathepsins misdirected to specific cystatin F containing endosomal/lysosomal vesicles. The finding that cystatin F was not colocalized with cystatin C suggests distinct functions for these two cysteine protease inhibitors in U937 cells.  相似文献   

5.
6.
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range.  相似文献   

7.
The carboxypeptidase and endopeptidase activities of cathepsins X and B, as well as their inhibition by E-64 derivatives, have been investigated in detail and compared. The results clearly demonstrate that cathepsins X and B do not share similar activity profiles against substrates and inhibitors. Using quenched fluorogenic substrates, we show that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i. e. approximately 2 orders of magnitude. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can be observed under conditions that preclude efficient monopeptidyl carboxypeptidase activity. In addition, an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X has been synthesized and tested against cathepsins X, B and L. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor. By comparison, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X.  相似文献   

8.
Gene structure of mouse cathepsin B   总被引:5,自引:0,他引:5  
The structure of a genomic DNA fragment encoding mouse cathepsin B was characterized. The genomic insert spans 15 kbp and contains 9 exons encoding the 339 amino acid residues of mouse preprocathepsin B. Intron break-points are not found at the junctions of the pre-peptide, pro-peptide and mature enzyme. Like other cysteine proteinase genes, the region around the cysteinyl active site is split by an intron, but in contrast with cathepsins L and H the intron break-point is located immediately after the active site.  相似文献   

9.
Cathepsin J has been partially purified [Liao, J. C. R. & Lenney, J. F. (1984) Biochem. Biophys. Res. Commun. 124, 909-916], but its detailed properties are still unknown. In this study, we have purified cathepsin J completely and characterized it. It was purified to homogeneity from the mitochondrial-lysosomal fraction of rat liver by acid treatment, followed by ammonium sulfate precipitation (20-65%), and chromatographies on S-Sepharose, ConA-Sepharose, Affi-gel 501, HPLC DEAE-5PW and HPLC TSK G3000SW. Cathepsin J was found to be a lysosomal high-molecular-mass cysteine protease of about 160 kDa consisted of two different subunits. One subunit (alpha subunit) was a glycoprotein with a molecular mass of 19-24 kDa which was reduced to 19 kDa by treatment with endoglycosidase F. It has the amino acid sequence LPESWDWRNVR at its N-terminus, which was very similar to those at the N-termini of rat cathepsins B, H and L. The other subunit (beta subunit) was a glycoprotein with a molecular mass of 17 kDa, which was reduced to 14 kDa by treatment with endoglycosidase F. It had DTPANETYPDLLG at its N-terminus, which had no similarity with the N-terminal sequences of other cathepsins. Cathepsin J showed strong affinity for synthetic substrates such as N-benzyloxycarbonyl-phenylalanyl-arginine 4-methyl-coumaryl-7-amide and glycyl-arginine beta-naphthylamide. It was activated by thiol reagents and chloride ion and was inhibited by cysteine protease inhibitors. However, its initial inhibition constant Ki(initial) by N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine-3- methylbutylamide (E-64-c) was 1800 nM, which was 100-500 times those of cathepsins B and L. Many properties of cathepsin J were similar to those of cathepsin C (dipeptidylaminopeptidase I) reported as a lysosomal cysteine protease with dipeptidyl-aminopeptidase activity [McDonald, J. K., Reilly, T. J. & Ellis, S. (1964) Biochem. Biophys. Res. Commun. 16, 135-140]. Furthermore, antiserum against rat liver cathepsin C reacted with rat liver cathepsin J. These findings suggested that cathepsin J is identical with cathepsin C.  相似文献   

10.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

11.
Human cathepsin F is a recently described papain-like cysteine protease of unknown function. To investigate the evolutionary relatedness to other human cathepsins, we determined the genomic organization and the chromosomal localization of cathepsin F and isolated its putative promoter region. The gene of human cathepsin F (CTSF) is composed of twelve exons and eleven introns and was found to be similar to that of cathepsin W but different from the cathepsins K, S, L, O, B, and C. The splice sites of nine out of the eleven introns were identical to those determined in the cathepsin W gene (CTSW), whereas introns one and ten were unique for CTSF. The 4. 7 kb gene was mapped to the long arm of chromosome 11 at position q13.1-3, a locus shared with CTSW. Phylogenetic analysis of human cathepsin protein sequences demonstrated that (i) cathepsins F and W are evolutionarily separated from other human cathepsins, and (ii) cysteine proteases closely related to human cathepsin W and F are also expressed in parasites and mammals. Based on these phylogenetic findings, on the presence of a particular protein motif ("ERFNAQ") in the propeptides of cathepsins F and W as well as the genomic organization and chromosomal localization of their genes, we concluded that F and W form a novel subgroup of cathepsin proteases. We suggest the naming "cathepsin F-like" proteases distinct from the previously described cathepsins "L- and B-like" subgroups.  相似文献   

12.
S L Harbeson  D H Rich 《Biochemistry》1988,27(19):7301-7310
The synthesis and inhibition kinetics of a new, potent inhibitor of arginine aminopeptidase (aminopeptidase B; EC 3.4.11.6) are reported. The inhibitor is a reduced isostere of bestatin in which the amide carbonyl is replaced by the methylene (-CH2-) moiety. Analysis of the inhibition of arginine aminopeptidase by this inhibitor according to the method of Lineweaver and Burk yields an unusual noncompetitive double-reciprocal plot. The replot of the slopes versus [inhibitor] is linear (Kis = 66 nM), but the replot of the y intercepts (1/V) versus [inhibitor] is hyperbolic (Kii = 10 nM, Kid = 17 nM). These results provide evidence for a kinetic mechanism in which the inhibitor binds to the S1' and S2' subsites on the enzyme, not the S1 and S1' subsites occupied by dipeptide substrates. Furthermore, structure-activity data for a series of ketomethylene dipeptide isosteres in which the amide (-CONH-) of a dipeptide is replaced with the ketomethylene (-COCH2-) moiety show that the S1 and S1' subsites preferentially bind basic and aromatic side chains, respectively. These results are in agreement with the known substrate specificity of arginine aminopeptidase. The structure-activity data for several bestatin analogues, however, show that these compounds do not bind to the S1 and S1' sites of arginine aminopeptidase. A comparison of the data provides evidence that bestatin inhibits arginine aminopeptidase and possibly other aminopeptidases by binding to the S1' and S2' sites of the enzyme.  相似文献   

13.
Rat liver thiol proteinases: cathepsin B, cathepsin H and cathepsin L   总被引:1,自引:0,他引:1  
Data on following points of lysosomal thiol proteinases (cathepsins B, H and L) from rat liver are described in this paper: Partial amino acid sequence of cathepsin B, substrate specificity of cathepsin L, immunological studies of cathepsin B and H and effectiveness of E-64, specific thiol proteinase inhibitor in vivo.  相似文献   

14.
F Toldrá  E Rico  J Flores 《Biochimie》1992,74(3):291-296
The effect of curing agents (salt, nitrate, ascorbic acid and glucose) and processing parameters (pH, water activity and drying and cooking temperatures) on pork muscle cathepsins B, D, H and L as well as leucyl, arginyl and tyrosyl hydrolysing activities is reported. Salt (60 g/l) showed a powerful inhibitory effect, especially on cathepsin D and aminopeptidase activities where less than 13% of the original activity was recovered. Cathepsin H was also affected (38% of the original activity) while cathepsins B and B+L recovered 72.5 and 63.0%, respectively. Nitrate (0.2-0.25 g/l) and ascorbic acid (0.2-0.4 g/l) did not significantly affect the enzyme activities. On the other hand, 0.5-2 g/l of glucose activated both cathepsins B and D with an increase of 39.5 and 28.5% and also leucyl and arginyl hydrolysing activities which were 75.0 and 24.0%, respectively. No aminopeptidase activity was detected when assayed in 100 mM sodium citrate buffer, pH 5.1. Cathepsin H was also very affected at that pH and only 12.0% of activity was recovered. A decrease in water activity, especially below 0.84, also affected the enzyme activities which were found below 50%. Temperatures in the usual range of the drying process (22 and 30 degrees C) gave substantial enzyme activities (around 40-50 and 80%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The action of bovine spleen cathepsin B as a dipeptidyl carboxypeptidase on newly synthesized substrates of the type peptidyl-X-p-nitrophenylalanyl (Phe(NO2))-Y (X,Y = amino acid residue) or 5-dimethylaminonaphthalene-1-sulfonyl (Dns)-peptidyl-X-Phe(NO2)-Y was investigated. The kinetic parameters of hydrolysis of the X-Phe(NO2) bond were determined by difference spectrophotometry (delta epsilon 310 = 1600 M-1 cm-1) or by spectrofluorometry by following the five- to eightfold increase of Dns-group fluorescence with excitation at 350 nm and emission at 535 nm. The substrates were moderately sensitive to cathepsin B; kcat varied from 0.7 to 4 s-1 at pH 5 and 25 degrees C; Km varied from 6 to 240 microM. The very acidic optima of pH 4-5 are characteristic for dipeptidyl carboxypeptidase activity of cathepsin B. Bovine spleen cathepsins S and H had little and no activity, respectively, when assayed with Pro-Glu-Ala-Phe(NO2)-Gly. These peptides should be a valuable tool for routine assays and for mechanistic studies on cathepsin B.  相似文献   

16.
A procedure for the simultaneous isolation of four cysteine proteinases, cathepsins B, H, L and C, from human kidney is described. The method includes concentration of the acidified homogenate by ammonium sulphate precipitation. The resuspended and dialysed precipitate was chromatographed on DEAE-cellulose DE-32, to allow separation of cathepsins H and C from cathepsins B and L. The main isoform of cathepsin H was separated from cathepsin C by cation-exchange chromatography on CM-Sephadex C-50. These two enzymes were further purified by covalent chromatography on thiopropyl Sepharose and gel permeation on Sephacryl S-200. The last step allowed separation of cathepsin C and the minor isoform of cathepsin H. Purification of the other two enzymes, cathepsins B and L, was carried out on thiol Sepharose, followed by chromatography on CM-Sepharose C-50. In this step, pure cathepsin L was obtained, while two isoforms of cathepsin B had to be finally purified on Sephacryl S-200 columns. The purity of each enzyme was analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis, isoelectric focusing on polyacrylamide gels and N-terminal sequencing. The activities of the purified cathepsins B, H and L were determined in terms of kcat/KM for three substrates, Z-Phe-Arg-MCA, Z-Arg-Arg-MCA and Arg-MCA. The method produced 25 mg of cathepsin B, 6.5 mg of cathepsin H, 1.5 mg of cathepsin L and 3.8 mg of cathepsin C from 3.5 kg of human kidney.  相似文献   

17.
1,3-dithia-2-stannacyclopentane derivatives with dialkyldithiocarbamates of the types SCH(2)CH(2)SSn[S(2)CNR(2)]Cl (I) and SCH(2)CH(2)SSn[S(2)CNR(2)](2) (II) (where R = CH(3), C(2)H(5) and -CH(2)-CH(2)-) have been synthesized by the reaction of 2,2-dichloro-1,3-dithia-2-stannacyclopentane and sodium/ammonium salts of dialkyldithiocarbamates in 1:1 and 1:2 molar ratios, respectively, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analyses (C, H, N, S and Sn), thermal [thermogravimetry (TG) and differential thermal analyses (DTA)] as well as spectral [UV, IR and multinuclear NMR ((1)H, (13)C and (119)Sn)] studies. The monodentate behaviour of the dialkyldithiocarbamate ligands was confirmed by IR and (119)Sn NMR spectral data and distorted tetrahedral structures have been suggested for both type (I) and (II) compounds. The free ligands and their tin complexes have also been screened for their antibacterial and antifungal activities. These results made it desirable to delineate a comparison between free ligands and their tin complexes. These exhibit higher antibacterial effect than some of the previously investigated antibiotics.  相似文献   

18.
We describe a novel diazomethylketone-containing irreversible inhibitor (BIL-DMK) which is specific for a subset of pharmaceutically important cysteine cathepsin proteases. BIL-DMK rapidly inactivates cathepsins B, F, K, L, S, and V in isolated enzyme assays and labels cathepsins in whole cells. The presence of catalytically active cathepsins B, L, and K or S was demonstrated using radioiodinated BIL-DMK in HepG2 (hepatoma), HIG82 (rabbit synoviocyte), and Ramos (B lymphoma) cell lines, respectively. The identity of each protein labeled was confirmed from the isoelectric point and molecular mass of the radioactive spots on two-dimensional gel and by comigration with each cathepsin as identified by immunoblotting. These cell lines were used to establish whole-cell enzyme occupancy assays to determine the potency of both irreversible and reversible inhibitors against each cathepsin in their native cellular lysosomal or endosomal environment. These whole-cell enzyme occupancy assays are useful to determine the cellular permeability of competing inhibitors and have the advantage of not requiring specific substrates for each cathepsin of interest.  相似文献   

19.
Cysteine proteases play key roles in apicomplexan invasion, organellar biogenesis, and intracellular survival. We have now characterized five genes encoding papain family cathepsins from Toxoplasma gondii, including three cathepsin Cs, one cathepsin B, and one cathepsin L. Unlike endopeptidases cathepsin B and L, T. gondii cathepsin Cs are exopeptidases and remove dipeptides from unblocked N-terminal substrates of proteins or peptides. TgCPC1 was the most highly expressed cathepsin mRNA in tachyzoites (by real-time PCR), but three cathepsins, TgCPC1, TgCPC2, and TgCPB, were undetectable in in vivo bradyzoites. The specific cathepsin C inhibitor, Gly-Phe-dimethylketone, selectively inhibited the TgCPCs activity, reducing parasite intracellular growth and proliferation. The targeted disruption of TgCPC1 does not affect the invasion and growth of tachyzoites as TgCPC2 is then up-regulated and may substitute for TgCPC1. TgCPC1 and TgCPC2 localize to constitutive secretory vesicles of tachyzoites, the dense granules. T. gondii cathepsin Cs are required for peptide degradation in the parasitophorous vacuole as the degradation of the marker protein, Escherichia coli beta-lactamase, secreted into the parasitophorous vacuole of transgenic tachyzoites was completely inhibited by the cathepsin C inhibitor. Cathepsin C inhibitors also limited the in vivo infection of T. gondii in the chick embryo model of toxoplasmosis. Thus, cathepsin Cs are critical to T. gondii growth and differentiation, and their unique specificities could be exploited to develop novel chemotherapeutic agents.  相似文献   

20.
1-Cyanopyrrolidines have previously been reported to inhibit cysteinyl cathepsins (Falgueyret, J.-P. et al., J. Med. Chem. 2001, 44, 94). In order to optimize binding interactions for a given cathepsin and simultaneously reduce interactions with the other closely related enzymes, small peptidic substituents were introduced to the 1-cyanopyrrolidine scaffold, either at the 2-position starting with proline or at the 3-position of aminopyrrolidines. The resulting novel compounds proved to be micromolar inhibitors of cathepsin B (Cat B) but nanomolar to picomolar inhibitors of cathepsins K, L, and S (Cat K, Cat L, Cat S). Several of the compounds were >20-fold selective versus the other three cathepsins. SAR trends were observed, most notably the remarkable potency of Cat L inhibitors based on the 1-cyano-D-proline scaffold. The selectivity of one such compound, the 94 picomolar Cat L inhibitor 12, was demonstrated at higher concentrations in DLD-1 cells. Although none of the compounds in the proline series that was tested proved to be submicromolar in the in vitro bone resorption assay, two Cat K inhibitors in the 3-substituted pyrrolidine series, 24 and 25 were relatively potent in that assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号