首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

2.
A knowledge of diel variation and the vertical distribution of phytoplankton communities may contribute to a better understanding of the driving factors of key species. Applying functional-group classification provides important information on the causes of species selection in the pelagic community. The diel variation of phytoplankton functional groups was analysed during an autumnal stratification period with the aim of understanding their changes in the vertical position related to light, mixing regime and grazing pressure. Phytoplankton and zooplankton communities were sampled every 4 h during a 24-h period in a vertical profile in a subtropical meso-eutrophic reservoir. Strong stratification during a 24-h cycle and a mixed clear epilimnion with partial atelomixis marked the autumn season in the Faxinal reservoir, southern Brazil. The highest phytoplankton densities and biomass were found during the second part of the day, a general pattern reported in the literature, and may be explained by zooplankton dynamics. During the 24-h cycle, phytoplankton functional groups lacking a self-regulating capacity and those able to regulate their vertical position were vertically segregated in the lake. The diel behaviour of both groups was driven by the mixing regime (including atelomixis), light and zooplankton grazing pressure.  相似文献   

3.
4.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

5.
ANTARCTIC AQUATIC ECOSYSTEMS AS HABITATS FOR PHYTOPLANKTON   总被引:10,自引:0,他引:10  
1. The Southern Ocean is a large-scale, relatively homogeneous upwelling ecosystem whose phytoplankton apparently grows suboptimally over much of its area. By contrast there is a wide variety of freshwater habitats in the Antarctic and in some of these phytoplankton growth efficiency is very high. The two habitats share similar temperature and irradiance regimes, but differ markedly in availability of inorganic nutrients, in grazing pressure and in the time- and space-scales on which various physical processes act. 2. Concentrations of inorganic nutrients in the marine ecosystem have been represented as being in excess of phytoplankton requirements, but the ionic composition of some nutrient pools may not conform to phytoplankton preferences. 3. Nutrient-limitation determines phytoplankton production in Antarctic lakes and gives rise to gross differences between lakes. 4. Irradiance in the water column varies greatly over the year in both marine and freshwater ecosystems. Most algae are shade-adapted, with the ability to utilize low irradiance but with sub-optimal response to high irradiance. However, local phytoplankton maxima may attain very high carbon fixation and growth rates. 5. Consistently low temperatures characterize both systems. Their effects on photo-synthetic carbon uptake mirror shade-adaptation. Division rates of marine phytoplankton may however be very much higher than predicted for ambient temperatures. 6. Vertical mixing is important in both ecosystems and influences the environment experienced by phytoplankton cells. This appears to have little effect on the average performance of phytoplankton in the strongly mixed surface water column of the Southern Ocean, where the mixed depth may exceed 100 m. This can be related partly to the shade-adapted photosynthetic response. Euphotic depths range from 20 to 100 m. 7. Strong vertical mixing under ice-free conditions in lakes may maximize photosynthetic efficiency, whilst distinct vertical stratification in permanently ice-covered lakes gives rise to segregation of nutrient uptake and regeneration. 8. Physical removal of phytoplankton biomass by grazing is locally important in the Southern Ocean, in contrast to the estimated mean mesoscale impact of grazing. Vertical sedimentation losses appear important in the context of mixing depth and generation time, and may be modified by vertical circulation of water. 9. Loss of phytoplankton biomass from lakes during the ice-free period is dominated by physical removal via the lake outflow. Grazing is generally unimportant, except where larvae of otherwise nektobenthic zooplankton hatch in synchrony with a phytoplankton maximum. Sedimentation is important under ice-cover.  相似文献   

6.
The phytoplankton of Lake Kinneret, a warm monomictic lake,is dominated by a Pyrrhophyta-Chlorophyta assemblage. Four stagesof succession of planktonic algae occur in the lake, startingwith thermal and chemical destratification and ending with stratification. The index of diversity of the phytoplankton communities is highduring the destratification and mixed periods. The index reachesminimal values during late summer, when the ecosystem is subjectto strong physical, chemical and biological stresses. The diversityin Lake Kinneret increases with the increase in nutrients andnot with the increase in temperature. During most of the year, the nanoplanktonic forms are in greaternumbers than the netplankton species. This fact is correlatedwith the amounts of available nutrients in the lake. The annual averages of the wet autotrophic biomass in Lake Kinneretare very high in comparison with other warm lakes. The contributionof the nanoplanktonic species to the total algal biomass isvery small during the Peridinium bloom, but represents approximatelyhalf of the total algal biomass during the rest of the year. The concentration of nutrients in the water, together with theadverse competitive effect of Peridinium on other algae, areto a large extent responsible for the composition, successionand abundance of the phytoplankton assemblages in Lake Kinneret.  相似文献   

7.
1. Size-fractionated phytoplankton biomass was examined in relation to the hydrodynamics of tropical Lake Alchichica from 1999 to 2002.
2. Alchichica is a warm monomictic lake, in which mixing takes place from late December to early March. The lake is oligotrophic (mean total chlorophyll- a concentration 4.2 ± 4.2  μ g L−1) and its phytoplankton biomass is dominated (72.3 ± 16.4%) by large individuals (>2  μ m). The degree of dominance of the large size class (nano- and microplankton) over the small size class (picoplankton) throughout the year is mainly determined by the availability of silicate and the Si/N ratio in the hypolimnion prior to the mixing period.
3. This is the first record of an oligotrophic tropical lake dominated by large size fractions of phytoplankton. Because of this dominance, the fate of most primary productivity is rapid sedimentation to the bottom followed by decomposition that promotes an anoxic hypolimnion.
4. Our findings in tropical Lake Alchichica challenge the idea that oligotrophic waters are dominated by small phytoplankton, as has been well established for the oligotrophic ocean and temperate lakes.  相似文献   

8.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

9.
Experimental tests of nutrient limitation in freshwater picoplankton   总被引:1,自引:0,他引:1  
On the basis of correlative studies, picoplankton in Calder Lake, New York, are apparently unaffected by seasonal fluxes in nutrient (N and P) levels. In this small eutrophic lake, picoplankton (<2.0- to 0.2-mum size) and nanoplankton (<20 to >2 mum) predominate. Microplankton (>20 mum) are typically least important. Experiments were conducted in situ to test whether N, P or N/P ratios affect the predominance of these smaller organisms. Manipulations were run in 4-liter microcosms during June, July, and August 1988, corresponding to periods of increasing stratification and nutrient depletion. Following nutrient additions, phytoplankton were harvested and fractionated into three size classes. Microplankton and nanoplankton were significantly stimulated by both N (2.5 to 50 muM) and P (1 to 20 muM) additions. The severity of nutrient limitation was greatest during July. Picoplankton responded less strongly to N additions and were never P limited. These field data support laboratory studies which indicate that bacterium-sized phytoplankton use nutrients more efficiently and are superior competitors within mixed communities.  相似文献   

10.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

11.
1. Short-term (days) hydrodynamic effects of wind-induced mixing on phytoplankton size structure, and C and N uptake characteristics, were studied in the surface mixed layer (epilimnion) of Lake Biwa (North Basin), before and during a period of high winds (typhoons). 2. The latter period was characterized by two major typhoon events associated with deepening of the seasonal thermocline, reduced water column stability, decreased underwater irradiance and increased dissolved reactive N and particulate P. 3. Nutrient concentrations, seston C/N ratios, and uptake rates indicated that phytoplankton biomass and production were limited by P and not N throughout the study. Higher C- and N-based productivity during the typhoon period than before reflected the increased phytoplankton biomass and higher specific uptake rates due to increased nutrient supply. 4. Changes in the size-structure of phytoplankton (< 2 and > 2 μm) were associated with variations in the stratification and mixing regime. When vertical stability was high (before the typhoons) concentrations of > 2 μm biomass (chlorophyll a, particulate organic C and N) were higher at the bottom of the mixed layer than at the surface whereas, when stability of the mixed layer was low (the typhoon period), the contribution of picoplankton (< 2 μm) to total Chl a increased at the surface and decreased at the bottom following the first high winds. 5. Photoadaptive adjustments of the phytoplankton provided further evidence of hydrodynamic control. The lower intracellular Chl a concentrations and C and N uptake efficiencies in the < 2 μm fraction suggest that they experienced, on average, higher irradiance than the larger cells because of their lower sinking rates. During the stability period, picoplankton exhibited higher photosynthetic efficiencies at the bottom of the mixed layer than at the surface. Such differences disappeared during the typhoon period indicating that the mixing rate was then probably higher than the photoacclimation rate in the small size fraction. 6. The present results stress the highly transient nature of biological homogeneity in the surface mixed layer of the lake.  相似文献   

12.
We studied the phytoplankton seasonality in the subarctic Lake Saanajärvi, Finnish Lapland, in two successive years with slightly different weather conditions. The total number of taxa studied during the period was 148. Characteristic phytoplankton species were chrysophytes Uroglena sp., Chrysococcus spp., Dinobryon spp and diatoms Cyclotella spp. The results were analysed in relation to weather patterns and physico-chemical variables measured from the lake during the 2 years. The seasonal dynamics of phytoplankton were characterized by (1) maxima in total densities during autumn and minima in winter; (2) different species reaching maximum and minimum densities during different seasons; (3) close to equilibrium state during strong thermal stratification in 1997 with dominance of only a few taxa; and (4) two annual maxima in species diversity at the beginning of the thermal stratification and during the autumn overturn. According to canonical ordinations, calcium buffer capacity, nutrients and temperature all play a role in regulating algal biomass and species compositions. With regard to physical factors, the length of the mixing cycle, thermal stability of the water column and water temperature seem to have a major control over the plankton dynamics. The length of the ice-free season seems to be more decisive for biomass production than the thermal stability during this period, which, in turn, appears to affect the algal biodiversity.  相似文献   

13.
1. Variation in depth of the mixed surface layer of temperate lakes should affect phytoplankton dynamics because, with increasing mixing depth, average light intensity in and specific sedimentation losses out of the mixed layer both decrease. 2. Our aim was to test a recent dynamic model which relates phytoplankton biomass and the availability of production‐limiting resources (light and dissolved mineral nutrients) to mixing depth and nutrient supply from external sources. 3. During summer stratification we sampled the mixed layers of 30 dimictic, phosphorus‐limited, oligo‐ to mesotrophic, mostly non‐humic lakes north of the Alps. 4. The results agree well qualitatively with model expectations. Algal concentration in the mixed layer was negatively related to mixing depth or its surrogate log‐transformed lake area. Light intensity at the bottom of the mixed layer decreased whereas the concentration of available, inorganic phosphorus increased with increasing mixing depth. Across all depths, higher total phosphorus content was accompanied by higher phytoplankton biomass, lower light availability, and higher inorganic phosphorus concentration. 5. Our data match the predicted shift with increasing mixing depth from predominantly nutrient limitation towards increased light limitation of algal biomass.  相似文献   

14.
The pelagic communities of two contrasting oligotrophic lakes in British Columbia were studied to determine why an interior, dimictic lake (Quesnel) supports a greater biomass of zooplankton and produces larger planktivorous sockeye salmon (Oncorhynchus nerka) than a coastal warm-monomictic lake (Sproat). The ultra-oligotrophic status and differing planktivore densities in Sproat Lake increased the relative importance of algal picoplankton, diminished the abundance of large zooplankton, and increased the significance of rotifers and other small-bodied zooplankton. These picoplankton based food webs result in longer, indirect and less efficient pathways of carbon flow from phytoplankton to fish. In contrast, Quesnel Lake is a more productive oligotrophic lake and its pelagic food webs are based more on nanoplankton and small microphytoplankton that support larger-bodied zooplankton (Daphnia, Diaptomus), and a more direct and efficient two-step transfer to fish. The greater variability of the annual recruitment of sockeye fry in interior lakes may keep zooplankton communities in a non-steady state, this in turn may perpetuate the occurrence of quadrennial cyclic dominance in adult salmon returning to these systems.  相似文献   

15.
Dynamics of autotrophic picoplankton in Lake Constance   总被引:7,自引:0,他引:7  
The vertical distribution, biomass concentrations and growthrates of autotrophic picoplankton (APP) were investigated duringthe growing season (March-October) in Lake Constance in differentdepths. Cell numbers determined by epifluorescence microscopyvaried between 1.0 x 103 and 1.6 times; 105 cells ml–1depending on season and water depth. Highest concentrationswere recorded above the thermodine in late summer. Numerically,APP consisted almost exclusively of chroococcoid cyanobactena.During lake stratification several peaks of biomass concentrationsoccurred in epilimsietic waters at intervals of 6–8 weeks.In-situ experiments using a dilution technique and dialysisbags revealed that during summer APP population dynamics wereprimarily driven by combined changes of their growth and grazingrates, whereas temperature was less important. Gross growthrates varied between 0.006 and 0.051 h–1, grazing ratesbetween 0.002 and 0.053 h–1. On average APP productionwas completely removed by grazing within the microbial community.Ciliates, heterotrophic nanoflagellates and rotifers have beenidentified as the major consumers of APP cells. APP biomassis small compared to larger phytoplankton, ranging from ito5% of total phytoplankton biovolume. Due to its high gross growthrates, which are on the same level as those of free-living pelagicbacteria, APP contributes slightly more to overall primary productionwith maximum percentages of {small tilde}15% in late summer.  相似文献   

16.
The seasonal dynamics of the biomass and production of phyto-, zoo- and bacterioplankton was investigated during the vegetation periods (from May to November) in 1985 and 1986 in the pelagial of the large eutrophic lake Peipsi (Estonia). The average values of productions per vegetation period for the investigation years were as follows: phytoplanktion − 203.5 gC · m−2; bacterioplankton − 37.9 gC · m−2; filter-feeding zooplankton − 20.6 gC · m−2 and predatory zooplankton − 1.5 gC · m−2. The herbivorous zooplankton production constituted 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain — filtrators are feeding mostly on living algae and the detrital food chain seems of little importance. The dominance of large forms (Melosira sp., Aphanothece saxicola), in the phytoplankton during the major part of the vegetation period is assumed to be a result of high grazing pressure on small algae. Zooplankton grazing was investigated in situ in a specially constructed twin bathometer. Experimental measurements revealed, that zooplanktion presence in the experimental vessel actually stimulated the phytoplankton growth in many cases — the negative grazing values have been registered. That could be caused by the stimulation effect of nutrients (N, P), excreted by the concentrated zooplankton in the grazing chamber, which led to an increase of the nongrazed phytoplankton production. Bacteria have satisfied the zooplankton food requirements on average by 11%. Grazing on bacteria increased, when grazing on phytoplankton was somehow disturbed.  相似文献   

17.
In order to yield some insights into the planktonic food web structure of new reservoirs, size‐fractionated biomass and productivity of phytoplankton were examined from 1996 to 1997 (following the 1995 flooding of the Sep Reservoir, Puy‐de‐Dôme, France), in relation to nutrients (P, N) and metazooplankton (Rotifers, Cladocera, Copepods). Autotrophic nanoplankton (ANP, size class 3–45 μm) dominated the phytoplankton biomass (as Chlorophyll a) and production, while autotrophic picoplankton (APP, 0.7–3 μm) exhibited the lowest and relatively constant biomass and production. Cells of the autotrophic microplankton (AMP, >45 μm) were considered inedible for planktonic herbivores. The production‐biomass diagram for the different size classes and the positive correlation between APP production and ANP + AMP production suggested that grazing was potentially more important than nutrients in shaping the phytoplankton size structure. Metazooplankton biomass was low compared to other newly flooded reservoirs or to natural lakes with phytoplankton biomass similar to that of the Sep Reservoir. This resulted in low ratios (metazooplankton to edible phytoplankton) both in terms of production (average 0.43% in 1996 and 0.76% in 1997) and biomass, suggesting that only a small fraction of phytoplankton was directly consumed by metazooplankton. We suggest that the observed low ratios in the Sep Reservoir, reflect possible low metazooplankton inputs in the main influents, changes in hydrologic conditions and a high potential role of microheterotrophs. The latter role was supported by (i) the positive inter‐annual correlation between ciliates and phytoplankton, (ii) the significant and negative correlations between ciliates and metazooplankton, and (iii) the significant and negative correlations between total metazooplankton biomass and total phosphorus (TP), whereas neither TP nor total metazooplankton biomass was correlated with phytoplankton variables.  相似文献   

18.
Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, 1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll ) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.Correspondence to: J. D. Wehr.  相似文献   

19.
Nixdorf  Brigitte 《Hydrobiologia》1994,(1):173-186
The polymictic properties of Lake Müggelsee, a eutrophic shallow lake in Berlin, are described by the water column stability (N 2) and gradients in saturation of oxygen at the deepest site of the lake (7.5 m). Mixing and stratification changed irregularly up to 7 times during the vegetation season (April to September), as was indicated by all of the stratification parameters. Thermally stable conditions generally lasted 1–2 weeks. A maximum of 5 weeks stratification was observed in 1982.In order to investigate the response of algal development, the internal rates of change of the dominant algal species in the lake during the vegetation period were estimated from weekly measurements of phytoplankton biomass from 1980 to 1990. The necessity taking a mixed sample in a shallow lake is discussed. The polymictic properties favoured the development of specific blue-green algal species; there dominance was also favoured by the trophic conditions. Among the dominant blue-greens the growth of Limnothrix redekei was independent of polymixis whereas stratification supported the starting conditions for the summer blue-greens Aphanizomenon flos-aquae and Planktothrix agardhii. After these algae reached a distinct level of biomass, they grew under mixing as well as under stratified conditions.For the development of solitary centric diatoms during summer regulation by growth restriction through nutrient limitation, esp. dissolved silicon was more important. However, Melosira sp. developed well under stratified conditions but collapsed due to increased sinking losses when the water column became too stable.An attempt is made to apply Reynolds' possibility matrix of the most likely phytoplankton assemblages as a function of nutrients and mixing in the shallow Lake Müggelsee.  相似文献   

20.
We examined the impact of five silver carp biomass levels (0, 8, 16, 20, and 32 g m−3) on plankton communities and water quality of Villerest eutrophic reservoir (France). We realized the experiments using outdoor mesocosms. The presence of silver carp led to changes in zooplankton and phytoplankton assemblages. High fish biomass strongly reduced cladoceran abundance (through predation). Silver carp inefficiently grazed down particles < 20 μm. More importantly, however, the suppression of herbivorous cladocerans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. In contrast, in mesocosms without fish, the dominance of cladocerans (mainly Daphnia) controlled small size algae and probably also larger size algae (colonial chlorophytes, cyanobacteria). Thus, the Secchi disc transparency increased markedly. Through cascade effects, the modification of grazers communities led to changes in the utilization patterns of the added nutrients by phytoplankton communities. In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. Zooplankton was an essential source of food for silver carp. The productivity of zooplankton sustained a moderate silver carp biomass (up to 16 g m−3). In the presence of the highest fish biomass, the productivity of zooplankton was not large enough and silver carps fed on additional phytoplankton. Although mesocosms with high fish biomass were characterized by a slight cyanobacteria development compared with other fish mesocosms, silver carp was not effective in reducing cyanobacteria dominance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号