首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weis SM  Cheresh DA 《Nature medicine》2011,17(11):1359-1370
As angiogenesis is essential for tumor growth and metastasis, controlling tumor-associated angiogenesis is a promising tactic in limiting cancer progression. The tumor microenvironment comprises numerous signaling molecules and pathways that influence the angiogenic response. Understanding how these components functionally interact as angiogenic stimuli or as repressors and how mechanisms of resistance arise is required for the identification of new therapeutic strategies. Achieving a durable and efficient antiangiogenic response will require approaches to simultaneously or sequentially target multiple aspects of the tumor microenvironment.  相似文献   

2.
3.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

4.
Visceral pain is the major cause of consulting in gastroenterology and the principal symptom of functional bowel disorders. This symptom is often associated with gut hypersensitivity to distension. The use of animal models has recently permitted the identification of some mediators supposed to play a pivotal role in the genesis of visceral hypersensitivity. Serotonin, through different receptor subtypes, as well as kinins and calcitonin gene-related peptide, are known to be involved, but other putative transmitters arise and are new potential targets for the development of efficacious treatments. This themes article addresses both physiological and preclinical issues of interest for the selection of active new drugs in regard to the clinical pharmacology of visceral pain.  相似文献   

5.
Osteosarcomas and chondrosarcomas are the most common primary bone sarcomas. They are often highly aggressive neoplasms that rapidly progress and eventually recur and give distant metastases. Although the prognosis and quality of life have been improved during the last decades, the pathogenesis of these tumours remains elusive. Recent advances in molecular genetics and cytogenetics have brought a wealth of genes and molecular pathways that govern osteoblast and chondroblast differentiation and maturation, providing a better understanding of the biology of osteogenetic and cartilage tumours. In this review we describe the major tumour suppressor and oncogenic pathways, as well as the most important signal transduction cascades implicated in the development and progression of these malignancies. Furthermore, we discuss novel treatment regimens and future, patient-tailored strategies that will add significantly to the current therapeutic armamentarium.  相似文献   

6.
During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. Ceramide is formed from SM by the action of sphingomyelinases (SMase), however, ceramide can be very rapidly hydrolysed, by ceramidases to yield sphingosine, and sphingosine can be phosphorylated by sphingosine kinase (SphK) to yield S1P. In immune cells, the sphingolipid metabolism is tightly related to the main stages of immune cell development, differentiation, activation, and proliferation, transduced into physiological responses such as survival, calcium mobilization, cytoskeletal reorganization and chemotaxis. Several biological effectors have been shown to promote the synthesis of S1P, including growth factors, cytokines, and antigen and G-protein-coupled receptor agonists. Interest in S1P focused recently on two distinct cellular actions of this lipid, namely its function as an intracellular second messenger, capable of triggering calcium release from internal stores, and as an extracellular ligand activating specific G protein-coupled receptors. Inhibition of SphK stimulation strongly reduced or even prevented cellular events triggered by several proinflammatory agonists, such as receptor-stimulated DNA synthesis, Ca(2+) mobilization, degranulation, chemotaxis and cytokine production. Another very important observation is the direct role played by S1P in chemotaxis, and cellular escape from apoptosis. As an extracellular mediator, several studies have now shown that S1P binds a number of G-protein-coupled receptors (GPCR) encoded by endothelial differentiation genes (EDG), collectively known as the S1P-receptors. Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the potential for targeting SphKs to suppress inflammation and other pathological conditions.  相似文献   

7.
The human epidermal growth factor receptor (HER) family of transmembrane tyrosine kinases regulates diverse cellular functions in response to extracellular ligands. The deregulation of HER signaling through gene amplification or mutation is seen in many human tumors and an abundance of experimental evidence supports the etiological role of these events in cancer pathogenesis. In addition, the fact that they are feasible targets for both antibody and small-molecule therapeutics has made them highly pursued targets for the development of rationally designed anticancer drugs. Several HER-targeting agents have entered clinical practice and this has led to novel discoveries regarding the mechanisms of resistance, which has defined a new generation of challenges for targeted cancer therapies. Here, we review recent advances in our understanding of HER signaling and targeting in cancer.  相似文献   

8.
Wen X  Lin ZQ  Liu B  Wei YQ 《Cell proliferation》2012,45(3):217-224
The caspase family is well characterized as playing a crucial role in modulation of programmed cell death (PCD), which is a genetically regulated, evolutionarily conserved process with numerous links to many human diseases, most notably cancer. In this review, we focus on summarizing the intricate relationships between some members of the caspase family and their key apoptotic mediators, involving tumour necrosis factor receptors, the Bcl-2 family, cytochrome c, Apaf-1 and IAPs in cancer initiation and progression. We elucidate new emerging types of cross-talk between several caspases and autophagy-related genes (Atgs) in cancer. Moreover, we focus on presenting several PCD-modulating agents that may target caspases-3, -8 and -9, and their substrates PARP-1 and Beclin-1, which may help us harness caspase-modulated PCD pathways for future drug discovery.  相似文献   

9.
Surplus accumulation of regulatory T cells (Tregs) is known to be at the bottom of many morbid conditions, among them being neuropsychiatric diseases. In particular, Tregs may inhibit Th1 cells, including brain autoimmune lymphocytes, controlling the local microglial response and brain tissue homeostasis. The present study was undertaken in an attempt to suggest a novel approach for the treatment of maladaptation to mental stress associated with excessive Treg accumulation. Recently it was shown that alkylating drugs (ADs), such as melphalan and cyclophosphamide (Cy) in the dose 100-fold lower than cytostatic one are capable to disturb signal transduction by IL-2R. In this study we demonstrated that IL-2R is not a unique receptor, which may be blocked with ADs. Similar effect has been shown for two other surface receptors: TNFR and Fas. Molecular mechanisms of the receptor blockage were investigated on the model of TNF signaling. Study of NF-κB activity in nuclear extracts showed that alkylating agents act at the level of surface receptor or of the receptor platform. It was also shown that ADs administration in ultralow doses results in selective elimination of Tregs. In this study we used a new laboratory model of Treg accumulation in mice. Such Treg accumulation was associated with cognitive and behavioral abnormalities, which may be prevented by Cy administration.  相似文献   

10.
11.
Multiple sclerosis (MS) is a disease that has shown a considerable increase in prevalence in recent centuries. Current knowledge about its etiology is incomplete, and therefore it cannot be managed optimally utilizing targeted therapeutic regimens at each stage of the disease. MS progresses in different stages, beginning with a cascade of inflammation. The pivotal spark to initiate this cascade seems to be the migration of Th17 into the central nervous system across the blood–brain barrier (BBB) through the disrupted tight junctions. Coupling of interleukin (IL)-17 and IL-22 to their receptors in the BBB layer facilitates this migration. Subsequently, axon degeneration and the various manifestations of nerve–muscle disorders appear. Curcumin, a major component of turmeric, is derived from Curcuma longa, which belongs to the Zingiberaceae family. Numerous properties of curcumin have been identified recently, some of which can be effective in the treatment of MS, particularly the anti-inflammatory properties via inhibition of secretion of proinflammatory cytokines. In this paper, we will review the various properties and key effects of curcumin for the treatment of MS.  相似文献   

12.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

13.
All living cells respond to external stimuli and execute specific physiological responses through signal transduction pathways. Understanding the mechanisms controlling signalling pathways is important for diagnosing and treating diseases and for reprogramming cells with desired functions. Although many of the signalling components in the budding yeast Saccharomyces cerevisiae have been identified by genetic studies, many features concerning the dynamic control of pathway activity, cross‐talk, cell‐to‐cell variability or robustness against perturbation are still incompletely understood. Comparing the behaviour of engineered and natural signalling pathways offers insight complementary to that achievable with standard genetic and molecular studies. Here, we review studies that aim at a deeper understanding of signalling design principles and generation of novel signalling properties by engineering the yeast mitogen‐activated protein kinase (MAPK) pathways. The underlying approaches can be applied to other organisms including mammalian cells and offer opportunities for building synthetic pathways and functionalities useful in medicine and biotechnology.  相似文献   

14.
Insulin signalling: metabolic pathways and mechanisms for specificity.   总被引:8,自引:0,他引:8  
Biological actions of insulin are mediated by the insulin receptor, a member of a large family of receptor tyrosine kinases (RTK). Signal transduction by the insulin receptor follows a paradigm for RTK signalling. Many intracellular signalling molecules contain multiple modular domains that mediate protein-protein interactions and participate in the formation of signalling complexes. Phosphorylation cascades are also a prominent feature of RTK signalling. Distal pathways are difficult to dissect because branching paths emerge from downstream effectors and several upstream inputs converge upon single branch points. Thus, insulin action is determined by complicated signalling networks rather than simple linear pathways. Interestingly, many signalling molecules downstream from the insulin receptor are also activated by a plethora of RTKs. Therefore, mechanisms that generate specificity are required. In this review we discuss recent advances in the elucidation of specific metabolic insulin signalling pathways related to glucose transport, one of the most distinctive biological actions of insulin. We also present examples of potential mechanisms underlying specificity in insulin signalling including interactions between multiple branching pathways, subcellular compartmentalization, tissue-specific expression of key effectors and modulation of signal frequency and amplitude.  相似文献   

15.
BackgroundEsculentosides and related phytolaccosides form a group of oleanene-type saponins isolated from plants of the Phytolaccaceae family, essentially Phytolacca esculenta, P. americana and P. acinosa. This chemical family offers a diversity of glycosylated compounds, including molecules with a mono-, di- or tri-saccharide unit at position C-3, and with or without a glucose residue at position C-28. The esculentosides, which derive essentially from the sapogenin jaligonic acid or its 30-methyl ester phytolaccagenin, exhibit anti-inflammatory, antifungal and anticancer activities.PurposeThe objective of the review was to identify the 26 esculentosides (ES) and phytolaccosides known to date, including 16 monodesmosidic and 10 bidesmosidic saponins, and to review their pharmacological properties and molecular targets.MethodologyThe retrieval of potentially relevant studies was done by systematically searching of scientific databases like Google Scholar and PubMed in January-May 2020. The main keywords used as search terms were related to esculentosides, phytolaccosides and Phytolaccaceae. The systematic search retrieved about 110 papers that were potentially relevant and after an abstract-based selection, 68 studies were analyzed in details and discussed.ResultsThe structural relationship between the compounds and their sapogenin precursors has been studied. In addition, the pharmacological properties of the main ES, such as ES-A, -B and -H, have been analyzed to highlight their mode of action and potential targets. ES-A is a potent inhibitor of the release of cytokines and this anti-inflammatory activity contributes to the anticancer effects observed in vitro and in vivo. Potential molecular targets of ES-A/B include the enzymes cyclooxygenase 2 (COX-2) and casein kinase 2 (CK2). In addition, the targeting of the protein high-mobility group box 1 (HGMB1) by ES-A/B is proposed, based on molecular modeling and the structural analogy with the related saponin glycyrrhizin, a potent HGMB1 alarmin inhibitor.ConclusionMore work is needed to properly characterize the molecular targets but otherwise compounds like ES-A and ES-H emerge as potent anti-inflammatory and anticancer agents and ES-B as an antifungal agent. A preclinical development of these three compounds should be considered.  相似文献   

16.
The natriuretic peptides (NPs) constitute a family of polypeptide hormones that regulate mammalian blood volume and blood pressure. The ability of the NPs to modulate cardiac hypertrophy and cell proliferation as well is now beginning to be recognized. The NPs interact with three membrane-bound receptors, all of which contain a well-characterized extracellular ligand-binding domain. The R1 subclass of NP receptors (NPR-A and NPR-B) contains a C-terminal guanylyl cyclase domain and is responsible for most of the NPs downstream actions through their ability to generate cGMP. The R2 subclass lacks an obvious catalytic domain and functions primarily as a clearance receptor. This review focuses on the signal transduction pathways initiated by ligand binding and other factors that help to determine signalling specificities, including allosteric factors modulating cGMP generation, receptor desensitization, the activation and function of cGMP-dependent protein kinase (PKG), and identification of potential nuclear or cytoplasmic targets such as the mitogen-activated protein kinase signalling (MAPK) cascade. The inhibition of cardiac growth and hypertrophy may be an important but underappreciated action of the NP signalling system.  相似文献   

17.
Accumulation of amyloid-β (Aβ) is widely accepted as the key instigator of Alzheimer’s disease (AD). The proposed mechanism is that accumulation of Aβ results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aβ in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-β precursor protein), which flanks the Aβ sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aβ conversion as a possible therapeutic target. Therapies aimed at modifying Aβ-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aβ levels are merely a result of earlier events that were already causing the disease.  相似文献   

18.
Significant advances have been made over the past few years concerning the cellular and molecular events underlying ischemic cell death. The brain succumbs to ischemic injury as a result of loss of metabolic stores, excessive intracellular calcium accumulation, oxidative stress, and potentiation of the inflammatory response. Neurons can also die via necrotic or apoptotic mechanisms, depending on the nature and severity of the insult. While it has been widely held that ischemia is notable for cessation of protein synthesis, brain regions with marginal reduction in blood supply are especially capable of expressing a variety of genes, the functions of many of which are only beginning to be understood. Gene expression is also upregulated upon reperfusion and reoxygenation. As a result, a number of signaling pathways have been identified and are now known to contribute to ischemic progression or, in some cases, attempts at self preservation. This review will focus on the roles of stress genes, apoptosis-related genes, and inflammation. Knowledge of such molecular events has fueled interest in developing specific molecular targets with the hope of someday affecting outcome in clinical stroke.  相似文献   

19.
The extracellular matrix (ECM) is composed of several families of macromolecular components: fibrous proteins such as collagens, type I collagen (COL1), type III collagen (COL3), fibronectin, elastin, and glycoconjugates such as proteoglycans and matrix glycoproteins. Their receptors on the cell membrane, most of which in the case of the ECM belong to the integrins, which are heterodimeric proteins composed of α and β chains. COL1 is the major fibrous collagen of bone, tendon, and skin; while COL3 is the more pliable collagen of organs like liver. Focus will not only be given to the regulation of synthesis of several fibrogenic parameters but also modulation of their degradation during growth factor‐induced tissue fibrosis and cancer development. Evidence will be provided that certain tissues, which undergo fibrosis, also become cancerous. Why does there exist a divergency between tissues, which undergo frank fibrosis as an endpoint, and those tissues that undergo fibrosis and subsequently are susceptible to carcinogenicity; resulting from the etiological factor(s) causing the initial injury? For example, why does a polyvinyl alcohol (PVA) sponge implant become encapsulated and filled with fibrous tissue then fibrosis tissue growth stops? Why does the subcutaneous injection of a fibrogenic growth factor cause a benign growth and incisional wounding results in fibrosis and ultimately scarring? There are many examples of tissues, which undergo fibrosis as a prerequisite to carcinogenesis. Is there a cause‐effect relationship? If you block tissue fibrosis in these precancerous tissues, would you block cancer formation? What are the molecular targets for blocking fibrosis and ultimately carcinogenesis? How can oligo decoys may be used to attenuate carcinogenesis and which oligo decoys specifically attenuate fibrogenesis as a prelude to carcinogenesis? What are other molecular targets for oligo decoy therapy in carcinogenesis? J. Cell. Biochem. 97: 1161–1174, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号