首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anti-CD3 mAb can activate T cells to help in B cell activation as detected by late events, such as maturation of B cells into Ig-secreting cells (IgSC), or by early events, such as B cell surface expression of the activation marker CD23. Two different anti-CD2 mAb each inhibited anti-CD3-induced T cell-dependent B cell activation in a dose-dependent fashion. Neither irradiation of the T cells prior to culture nor depletion of CD8+ cells abrogated the inhibitory effects of anti-CD2 mAb. Despite the ability of these anti-CD2 mAb to inhibit anti-CD3-induced IL2 production, addition of exogenous IL2 to anti-CD2 mAb-containing cultures could not fully reverse the inhibitory effects on IgSC generation. Furthermore, addition of various combinations of IL1, IL2, IL4, and IL6 or crude PBMC or monocyte culture supernatants also could not reverse anti-CD2-driven inhibition. In T cell-depleted cultures, anti-CD2 mAb had no effect on the ability of IL4 to induce B cell CD23 expression, confirming that anti-CD2 mAb had no direct effect on B cells. However, in cultures containing T+ non-T cells, anti-CD2 mAb did partially inhibit IL4-induced B cell CD23 expression. Taken together, these observations demonstrate that certain CD2 ligands can modulate T cell-dependent B cell activation by a mechanism which, at least in part, involves a direct effect by the CD2 ligand on the T cell itself.  相似文献   

2.
Experiments were conducted in an effort to determine the ability of B and T lymphocytes to serve as APC for the activation of HSV-primed splenic T cells to become class I-restricted, HSV-specific CTL. The results showed that both freshly isolated splenic B cells as well as LPS and dextran sulfate (L/D)-activated B cells were effective at stimulating the generation of CTL during a 5-day in vitro culture. There was no requirement for the addition of exogenous IL-2 to the culture and, since murine B cells do not appear to express either membrane or secreted IL-1, this lymphokine appears to either not be required for the activation of virus-specific CTL or to be provided by the T cells themselves. When normal B cells were separated into fractions enriched for resting vs activated cells and then tested for their ability to stimulate the generation of HSV-specific CTL, it was found that while the activated B cells were quite effective at stimulating the generation of CTL, resting B cells were ineffective at carrying out this function. In contrast to normal B cells, normal T cells were unable to act as APC. However, Con A-activated T lymphoblasts were equivalent to L/D B cells in their ability to mediate the generation of CTL activity. L/D B cells that had been pulsed with HSV and then incubated at 37 degrees C for greater than 1 h could be fixed with paraformaldehyde and were still able to function as APC. The finding that L/D B cells, that had been fixed at 1 h or less after exposure to HSV, were unable to function as APC suggested that either active Ag "processing" steps may be required for the presentation of Ag in the context of class I molecules or that there is a requirement for the synthesis of viral protein Ag before presentation.  相似文献   

3.
Between 5 and 20% of normal human lymphocytes were found to synthesize interferon-gamma (IFN-gamma) in primary cultures with recombinant interleukin-2 (rIL-2). After 22 hr, IFN-gamma-producing cells included CD5+ T lymphocytes, CD16+ large granular lymphocytes (LGL), and a population of CD5-, CD16- blast cells. Only a small proportion (0-7%) of IFN-gamma-synthesizing cells expressed HLA-DR. The production of IFN-gamma by all rIL-2-responding lymphocyte subsets was shown to require the presence of DR+ accessory cells, probably including nonadherent, esterase-negative monocytes and/or dendritic cells. Accessory cell function in lymphocyte preparations depleted of DR+ cells, or in purified (greater than or equal to 95%) suspensions of LGL, was fully replaced either by addition of 2% autologous, adherent monocytes or by monocyte culture supernatant. The activity of monocyte supernatant was greatly reduced by treatment with antiserum specific for human interleukin-1 beta (IL-1 beta), although a combination of rIL-1 beta and rIL-2 failed to stimulate IFN-gamma production in DR- lymphocytes. These results indicate that rIL-2-induced IFN-gamma synthesis in both T cells and LGL requires the synergistic activity of IL-1, and possibly of one or more other monokines, as yet unidentified.  相似文献   

4.
The T cell receptor (TcR) heterodimer of alpha/beta glycoprotein is noncovalently associated with CD3 glycoprotein forming TcR/CD3 complex. The TcR have been shown to recognize antigen, and CD3 antigen is responsible for signal transduction. In this study we compared the effects of WT31 (defining alpha/beta TcR) monoclonal antibody (MoAb) and anti-CD3 MoAb on various steps of human T cell activation. Both antibodies depolarized plasma membranes, increased cell volume, induced IL-2 production and the expression of IL-2 receptors (CD25 antigen) and induced DNA synthesis. Furthermore, the two antibodies showed no synergistic effect on any of these parameters. However, both MoAb showed synergism with phorbol ester (PMA). WT31-induced T cell activation was Ca(2+)-dependent because the addition of EGTA to the medium inhibited DNA synthesis and CD25 antigen expression. The blockers of protein kinase C (PKC), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and staurosporin, in a dose-dependent manner inhibited WT31-induced DNA synthesis. Cholera toxin but not the pertussis toxin inhibited WT31-induced T cell activation, suggesting involvement of G protein in WT31-induced T cell activation. These data indicate that WT31 antibody activates human T cells by a pathway that is similar to that of anti-CD3-induced T cell activation.  相似文献   

5.
Two monoclonal antibodies (mAb) recognizing different CD2 epitopes each inhibited anti-CD3-induced proliferation and anti-CD3-induced increase in surface CD2 expression. The magnitude of inhibition by either anti-CD2 mAb was dependent upon which anti-CD3 mAb was used as the stimulus, being more pronounced when the anti-CD3 mAb 454 was used as the stimulus than when either anti-CD3 mAb 147 or 446 was the stimulus. The effects of neuraminidase-treated sheep erythrocytes (which bind to CD2) were also more pronounced on mAb 454-induced proliferation than on mAb 147- or 446-induced proliferation. Furthermore, the effects of preincubation with anti-CD2 mAb depended upon the responder status of the donor to IgG1 anti-CD3 mAb. Preincubation of high-responder cells with anti-CD2 mAb had little effect on subsequent IgG1 anti-CD3-induced proliferation. In contrast, preincubation of low-responder cells with anti-CD2 mAb usually augmented the otherwise small proliferative response to IgG1 anti-CD3 mAb. Taken together, these observations suggest that interaction of surface CD2 with ligand alters the response of T cells to anti-CD3 mAb, but these effects depend upon the individual anti-CD3 mAb used for stimulation. These studies raise the possibility that perturbation of different parts of the CD3-T cell antigen receptor complex may lead to different sequelae, and, as a result, the T cell may respond to a given immunomodulator in different ways.  相似文献   

6.
The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4 beta-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Cell cycle analysis by acridine orange staining indicated that neither PHA nor ionomycin, in the absence of AC, activated resting T cells. PMA in the absence of all AC, supported cell cycle entry and progression to the DNA synthetic phase of the majority of ionomycin-stimulated T cells, but permitted only a small number of PHA-triggered T cells to enter the initial stage of the cell cycle (G1a) characterized by a modest increase in cellular RNA content. Although PMA permitted some PHA-stimulated T cells to enter the cell cycle, most required intact AC to enter G1, and all required intact AC to progress through G1 and synthesize maximal amounts of RNA. No PHA-stimulated cells reached the S phase without intact AC. In PHA-stimulated cultures containing intact AC, PMA increased the number of cells entering the cell cycle and increased the rate of their progress to the DNA synthetic phase. IL 1 also augmented PHA-stimulated AC-dependent T cell DNA synthesis in the presence or absence of PMA, but appeared to be most active during the later stage of the first cell cycle, augmenting the number of activated cells that entered the S phase of the cell cycle. These results support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen-stimulated T cells through the first round of the cell cycle.  相似文献   

7.
Monoclonal antibody (MAb) GT2 defines a unique epitope on the CD2 molecule. GT2 triggers T cell mitosis in combination with any MAb directed against 9.6/T11(1) or D66, two previously defined CD2 epitopes. We have shown already that accessory cells (AC) are required for plenary T-PBL activation by any pair of Ab directed against D66 + 9.6/T11(1). In this study, we further investigated their role and found it to vary with the anti-CD2 pair used. When purified T-PBL preparation is used, the level of [3H]TdR incorporation observed with anti-(GT2 + 9.6/T11(1)) Ab was not significant; however, it did prove significant, although greatly reduced, with the other anti-CD2 pairs tested. This was due to qualitative differences in the process of T-PBL activation, and the role of AC, because: anti-(GT2 + 9.6/T11(1)) did not induce IL 2-R expression on purified T-PBL, whereas the other anti-CD2 pairs tested did; anti-(GT2 + 9.6/T11(1)) did not induce detectable IL 2 secretion from purified T-PBL, whereas the other anti-CD2 pairs tested induced a low amount; and anti-CDw18 Ab inhibited the mitogenic effect of anti-(GT2 + 9.6/T11(1)) on PBMC by preventing both IL 2-R expression and IL 2 secretion, whereas anti-CDw18 Ab enhanced the mitogenic effect of the other anti-CD2 pairs tested. Paraformaldehyde-fixed AC fully restored, and recombinant IL 1 partially restored purified T-PBL mitosis triggered by all anti-CD2 pairs tested. To induce IL 2 synthesis, the necessity to cross-link anti-CD2 Ab was demonstrated by coupling one Ab on Sepharose beads and adding the second Ab in the soluble phase: under these circumstances, anti-CD2 pairs were mitogenic solely in the presence of AC. These data can be interpreted as follows. Most anti-CD2 pairs require minimal contact between AC and T-PBL to induce plenary levels of IL 2 synthesis. When anti-(GT2 + 9.6/T11(1)) are used, additional contact is necessary, both for IL 2-R expression and IL 2 synthesis, which would include CDw18 for stabilization. We believe these differences could be related to different conformational changes on the CD2 molecule, depending on the epitope on which the antibodies bind, and could account for different signaling to T cells.  相似文献   

8.
In this study, we have investigated the ability of splenic B cells to act as antigen-presenting cells. Previous data had established that lipopolysaccharide (LPS)-activated B cells were effective antigen-presenting cells; however, the relative capacity of resting B cells to carry out this function remains controversial. Splenic B cells from naive BALB/c mice were depleted of macrophages, dendritic cells, and T cells, and were fractionated on the basis of cell density by using Percoll gradient centrifugation. Fractions were collected from the 50/60, 60/65, and 65/72% interfaces and from greater than 72% (pellet). Cytofluorograph analysis of the fractionated B cells showed that the two lower density fractions (50/60 and 60/65) contained a number of cells which, by cell size determination, appeared to be activated B cells, whereas the two higher density fractions (65/72 and greater than 72) appeared to contain predominantly small resting B cells contaminated by many fewer activated B cells. Functionally, the capacity of fractionated B cells to act as accessory cells for a concanavalin A response or present the antigens chicken ovalbumin (OVA) or OVA-tryptic digest gave similar results, which indicated a striking hierarchy of accessory cell function in the different Percoll fractions. When normalized to the most active low-density fraction (50/60%), the activity of the other fractions were: 60/65 = 78%; 65/72 = 25%; and greater than 72 = 4%. The differences in the functional capacity between the various Percoll fractions did not appear to be due to differences in Ia expression. Although the expression of Ia varied approximately 12-fold within any one fraction, there was little difference in the mean amount of Ia on cells obtained from the various fractions. Kinetic studies showed that activation of B cells with LPS and dextran sulfate resulted in the expression of two stages of functional development. The first stage was an increased efficiency of accessory cell function that was abrogated by irradiation with 4000 rad followed by a second stage, which was characterized by the acquisition of resistance to treatment with 4000 rad. When nonfractionated B cells that had been stimulated with LPS and DexSO4 were sorted on the basis of cell size into a small B cell fraction and a large B cell fraction, only the large B cells were able to present antigen. Taken together, these data suggest that much of the accessory cell function associated with splenic B cells can be accounted for by the relatively small percentage of activated B cells present in the spleen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effects of anti-CD2 monoclonal antibodies (mAb) on anti-CD3-driven interleukin 2 (IL2) production and IL2 receptor (IL2R) expression were investigated. Two anti-CD2 mAb, which had previously been shown to inhibit in vitro anti-CD3-induced T cell proliferation, also inhibited anti-CD3-induced IL2 production. However, it seemed unlikely that this was the crucial mechanism in the inhibition of anti-CD3-driven proliferation, since anti-CD2 mAb also partially inhibited T cell proliferation induced by the anti-CD3 mAb 446 which does not induce detectable IL2 levels. Anti-CD2 mAb also inhibited anti-CD3-induced surface IL2R expression as measured by immunofluorescence staining with an anti-IL2R mAb against the p55 chain. Inhibition of IL2R expression paralleled inhibition of proliferation. This anti-CD2-mediated inhibition involved a block in the generation of normal numbers of IL2R+ cells rather than a direct inhibitory effect on the IL2R+ cells themselves, since IL2R+ cells isolated from anti-CD2-containing cultures responded normally to IL2. Exogenous IL2 and IL4, singly or in combination, could reverse neither the anti-CD2-mediated inhibition of anti-CD3-induced proliferation nor the anti-CD2-mediated inhibition of anti-CD3-induced IL2R expression. Taken together, these observations suggest that anti-CD2 mAb inhibit anti-CD3-driven proliferation by inhibiting the generation of IL2R+ cells at a maturational stage proximal to their expression of surface IL2R. This inhibition cannot be overcome by exogenous IL2 or IL4, suggesting that the underlying biochemical mechanism involves an IL2- and IL4-independent pathway.  相似文献   

10.
Antibodies directed against the human T cell receptor or the closely associated CD3 molecule stimulate polyclonal T cell proliferation via mechanisms that mimic a primary immune response. We have investigated the requirement for IL-1 production in anti-CD3 (OKT3)-mediated mitogenesis using a Hodgkin's disease cell line (L428) as the accessory cell. L428 cells did not produce detectable IL-1 following stimulation with lipopolysaccharide or phorbol ester (PMA), nor did they transcribe detectable levels of mRNA for IL-1 alpha or beta after such treatment. Despite their inability to produce IL-1, as few as 1 X 10(4) L428 cells reconstituted the proliferative response of accessory cell-depleted T cells to anti-CD3. Although larger numbers of non-rosette-forming (E-) cells were required for maximal responsiveness to anti-CD3, the maximal degree of proliferation was higher with E- cells than with L428 cells. L428-mediated T cell proliferation did not result from residual accessory cells in the responding population or an allogeneic effect since L428 cells were also capable of providing accessory cell activity for the anti-CD3-dependent generation of IL-2 by the Jurkat T cell line. Although the mechanism by which L428 cells provide accessory functions remains incompletely characterized, the ability of anti-HLA-DR F(ab')2 fragments to completely abrogate L428 and monocyte-mediated anti-CD3 mitogenesis, despite the addition of exogenous IL-1, provides evidence for the participation HLA-DR molecules in this response. These data indicate that anti-CD3-induced proliferation of unprimed human T lymphocytes can occur independently of IL-1 production by accessory cells and may involve the participation of HLA-DR molecules.  相似文献   

11.
MUC1 is a mucinous glycoprotein which is normally expressed on the surface of a variety of epithelia and aberrantly overexpressed on some human tumors. In this report, we demonstrate that the epithelial mucin, MUC1, is expressed on resting human peripheral blood T cells and two leukemia T cell lines, Jurkat and Hut 78. Crosslinking of MUC1 on peripheral blood T cells by plate-bound anti-MUC1 (DF3-P) antibody inhibits cell proliferation, IL-2 and GM-CSF production, and up-regulation of the IL-2 receptor upon anti-CD3 stimulation. Induction of IL-2 production by Jurkat and HUT 78 is also suppressed and cannot be reversed by the addition of anti-CD28 mAb. These findings suggest that MUC1 can be a potent negative regulator for T cell activation at the resting stage.  相似文献   

12.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

13.
14.
15.
Using human thymocytes and autologous thymic epithelial (TE) cells grown in vitro in long-term culture, we have found TE cells can function as accessory cells for mitogen-induced mature thymocyte activation. Tritiated thymidine incorporation, blast formation, and protein synthesis were all induced in accessory cell-depleted thymocytes by autologous TE cells in the presence of suboptimal concentrations of PHA. After 3 days of mitogen stimulation of thymocyte-TE cell cocultures in vitro, thymocyte blasts bound to TE cells and 77 +/- 4% (mean +/- SEM) of TE cells acquired expression of major histocompatibility complex (MHC) class II (DR) antigen. TE accessory cell function for thymocyte activation was dependent on the number of TE cells added to thymocyte cultures, was not dependent on TE cell division, but did require TE cell protein synthesis. In thymocyte separation experiments, the predominant cell type responding to PHA in the presence of TE cells was T6- mature (stage III) thymocytes. Thus, human TE cells are capable of providing signals that lead to mature thymocyte activation.  相似文献   

16.
Human T cells can be divided into subsets based on the expression of CD29, CD45RA, CD45RO, LFA-3, or CD11a. It has been suggested that the subset of CD4+ T cells that expresses high densities of CD29, CD11a, CD45RO, and LFA-3 contains "memory" T cells, whereas the subset of cells that expresses CD45RA contains "naive" T cells. In order to obtain a more complete picture of the functional capacities of human naive and memory CD4+ and CD8+ T cell subsets, highly purified T cells were activated with a uniform stimulus and responses were examined in bulk cultures and under limiting dilution conditions. T cell activation was achieved with an immobilized mAb to the CD3 molecular complex, 64.1. In bulk cultures, immobilized 64.1 stimulated a vigorous response. Moreover, the number of cells entering the cell cycle, the magnitude of the [3H]thymidine incorporation, and the growth of the cells over 6 days in culture by naive and memory CD4+ T cells was comparable. To delineate the frequency of responsive cells in each subset more precisely, cells were cultured with immobilized 64.1 at limiting dilution and the precursor frequency of responding cells was assessed by examining wells microscopically for visible growth. Immobilized 64.1 was able to induce some T cells from each subset to grow in the complete absence of AC, when exogenous IL2 was present. The number of responding CD4+ and CD8+ cells was comparable. The percentage of naive cells responding in each population was approximately three times greater than the frequency of memory cells. IL4 could also support the growth of immobilized 64.1-activated CD4+ T cells, but the frequency of responding cells was much lower than that supported by IL2. The vast majority of the IL-4 responsive CD4+ cells resided within the naive cell subset. The data indicate that the response of CD4+ and CD8+ naive and memory T cell subsets to immobilized anti-CD3 depends on the density of responding cells. Naive T cells have an enhanced capacity to grow when cultured in the absence of other T cells or accessory cells. This ability may facilitate their expansion during primary immune responses.  相似文献   

17.
Requirements for suppressor cell activation. Role of accessory cells   总被引:1,自引:0,他引:1  
In the 4-hydroxy-3-nitrophenyl acetyl (NP) suppressor system, third order suppressor cells (Ts3) subset of suppressor cells is generated after Ag priming, but, in order to express suppressor activity, these cells need to be further activated or triggered with a specific second order suppressor factor. By in vitro activation of Ts3-containing lymph node cells or a pTs3 hybridoma we now show that macrophages are also required for Ts3 activation. In addition, we demonstrate that IJ genetic restrictions control this activation process. Furthermore, we directly demonstrate Ts3 activation using cloned macrophage hybridoma cells. To further investigate the interactions between Ts3 cells and the accessory cells involved in their activation, we attempted to block the second order suppressor factor mediated activation of Ts3 cells with antibodies. The activation of Ts3 cells can be blocked by the addition of anti-IJ, anti-IJ idiotype or anti-NPb idiotype antibodies, but not by anti-CD8, anti-IA, or anti-IE antibodies. Anti-IJ mAb blocked Ts3 activation at the lymphocyte level whereas anti-IJ idiotype blocked activation at the accessory cell level. Finally we tested, whether these antibodies can also directly activate primed Ts3 cells. We demonstrate that cross-linked anti-IJ, anti-NPb and anti-CD3 antibodies can activate Ts3 cells. The results are discussed in terms of receptor-ligand structures on Ts and accessory cells which are required for the activation of Ts3 cells.  相似文献   

18.
IL-6 is a multifunctional cytokine which is produced by a variety of cells. Therefore it was examined whether anti-CD3-induced T cell activation was associated with the induction of functionally relevant IL-6 in human monocyte accessory cells. Significantly increased amounts of IL-6 were detected in supernatants of anti-CD3-treated PBMC. Stimulation of FACS-sorted greater than 98% pure monocyte accessory cells, but not of highly purified T cells with anti-CD3, resulted in an increased IL-6 production. Furthermore, anti-CD3 significantly enhanced IL-6 mRNA expression in monocyte accessory cells. IL-6 production was not limited to anti-CD3, inasmuch as equivalent IL-6 stimulation could be achieved with a mouse IgG2a isotype control antibody. In contrast to solid phase-bound mouse IgG2a, the soluble form of this antibody failed to induce IL-6 secretion indicating a requirement for Fc gamma RI receptor cross-linking. Moreover, this property may be specific for the Fc gamma RI receptor inasmuch as mouse IgG1 antibodies binding to the Fc gamma RII receptor did not significantly enhance IL-6 production. The role of IL-6 being an additional signal in T cell activation was confirmed by the finding that an anti-IL-6 antiserum was able to suppress anti-CD3-induced T cell activation. These data indicate that binding of anti-CD3 to Fc gamma RI may generate an activation signal towards the monocyte accessory cell leading to the production and secretion of monocyte IL-6, which in turn augments T cell activation, and also may be relevant to a variety of antibody-mediated immune responses against viral and bacterial infections.  相似文献   

19.
The contribution of B lymphocytes as APCs for CD4+ T cell priming remains controversial, based on findings that B cells cannot provide the requisite ligating and costimulatory signals for naive T cells to be activated. In the current study, we have examined Ag-specific T:B cell collaboration under circumstances in which B cells take up Ag through Ig receptors in vivo. This results in their activation and an ability to effectively stimulate naive CD4+ T cells both in vitro and in vivo. The aim of this work was to establish some of the key molecular interactions, as well as kinetics, between Ag-specific T and B cells that enable this priming to take place. Our approach was to amplify the starting pools of both Ag-specific T and B cell populations in vivo to track directly the events during initial T:B cell collaborations. We show that the induction of optimal levels of T cell priming to a protein Ag requires the involvement of Ag-specific B cells. The interaction that results between Ag-specific T and B cells prevents the down-modulation of B7 costimulatory molecules usually observed in the absence of appropriate T cells. Moreover, this prevention in down-modulation is independent of CD40:CD40 ligand contact. Finally, we present data suggesting that once Ag-specific T and B cells interact, there is a rapid (1-2-h) down-regulation of antigenic complexes on the surface of the B lymphocytes, possibly to prevent them from engaging other T cells in the vicinity and therefore focus the initial interaction.  相似文献   

20.
The effects of a preparation containing partially purified, EL4-derived B cell growth factor(s) (BCGF) on B cell growth and proliferation have been examined by using B lymphocyte subpopulations separated on the basis of size. BCGF was found to maintain and enhance proliferation of a significant proportion of large activated B cells. In contrast, small resting B cells required the presence of BCGF and a second stimulus such as anti-IgM antibody (anti-mu) to be induced to proliferate. This disparity was not due to a lack of an effect of BCGF on small resting B cells. A factor contained within the partially purified EL4 supernatant produced time-dependent increases in cell size and RNA content in all subpopulations. These effects were independent of possible effects due to contaminating lymphokines such as interleukin 2 (IL 2), concanavalin A (Con A), and phorbol myristate acetate (PMA). Nonmitogenic doses of lipopolysaccharide (LPS) failed to show similar effects. Our data suggest that B cells at all levels of in vivo activation are responsive to stimulation by a growth factor present in EL4 supernatant, as manifested by cell growth and RNA synthesis. This activity has not previously been described for BCGF preparations. However, because the partially purified, EL4-derived supernatant used as BCGF in these studies has not been purified to homogeneity, we cannot conclude whether the factors that induce resting B cells to increase in size are the same as the growth factors that synergize with anti-mu to induce B cell proliferation or that maintain the proliferation of activated B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号