首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orexin-A and orexin-B orchestrate their diverse central and peripheral effects via two G-protein coupled receptors, OX1R and OX2R, which activate multiple G-proteins. In many tissues, orexins activate extracellular signal-regulated kinase (ERK(1/2)) and p38 mitogen-activated protein kinase (MAPK); however, the mechanism by which OX2R alone mediates MAPK activation is not understood. This study describes the intracellular signalling pathways involved in OX2R-mediated ERK(1/2) and p38 MAPK activation. In HEK-293 cells stably over-expressing recombinant human OX2R, orexin-A/B resulted in a rapid, dose and time dependent increase in activation of ERK(1/2) and p38 MAPK, with maximal activation at 10 min for ERK(1/2) and 30 min for p38 MAPK. Using dominant-negative G-proteins and selective inhibitors of intracellular signalling cascades, we determined that orexin-A and orexin-B induced ERK(1/2) and p38 MAPK activation through multiple G-proteins and different intracellular signalling pathways. ERK(1/2) activation involves Gq/phospholipase C (PLC)/protein kinase C (PKC), Gs/adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) and Gi cascades; however, the Gq/PLC/PKC pathway, as well as PKA is not required for OX2R-mediated p38 MAPK activation. Interestingly, orexin-B-induced ERK(1/2) activation is predominantly mediated through the Gq/PLC/PKC pathway. In conclusion, this is the first comprehensive signalling study of the human OX2R recombinant receptor, showing ERK(1/2) and p38 MAPK activation are regulated by differential signalling pathways in HEK-293 cells, and that the ERK(1/2) activation is severely affected by naturally occurring mutants associated with narcolepsy. Moreover, it is evident that the human OX2R has ligand specific effects, with orexin-B being more potent in this transfected system and this distinct modulation of the MAPKs through OX2R, may translate to the regulation of diverse biological actions of orexins.  相似文献   

2.
The dopamine D2 receptor (D2R) plays an important role in mesencephalic dopaminergic neuronal development, particularly coupled with extracellular signal-regulated kinase (ERK) activation. Wnt5a protein is known to regulate the development of dopaminergic neurons. We analyzed the effect of Wnt5a on dopaminergic neuron development in mesencephalic primary cultures from wild-type (WT) and D2R knock-out (D2R(-/-)) mice. Treatment with Wnt5a increased the number and neuritic length of dopamine neurons in primary mesencephalic neuronal cultures from WT mice, but not from D2R(-/-) mice. The effect of Wnt5a was completely blocked by treatment with D2R antagonist or inhibitors of MAPK or EGFR. Wnt5a-mediated ERK activation in mesencephalic neuronal cultures was inhibited by treatment of D2R antagonist and EGFR inhibitors in WT mice. However, these regulations were not observed for D2R(-/-) mice. Co-immunoprecipitation and displacement of [(3)H]spiperone from D2R by Wnt5a demonstrated that Wnt5a could bind with D2R. This interaction was confirmed by GST pulldown assays demonstrating that the domain including transmembrane domain 4, second extracellular loop, and transmembrane domain 5 of D2R binds to Wnt5a. These results suggest that the interaction between D2R and Wnt5a has an important role in dopamine neuron development in association with EGFR and the ERK pathway.  相似文献   

3.
Dopamine D2 receptor (D2R)-mediated extracellular signal-regulated kinase (ERK) activation plays an important role in the development of dopaminergic mesencephalic neurons. Here, we demonstrate that D2R induces the shedding of heparin-binding epidermal growth factor (EGF) through the activation of a disintegrin and metalloprotease (ADAM) 10 or 17, leading to EGF receptor transactivation, downstream ERK activation, and ultimately an increase in the number of dopaminergic neurons and their neurite length in primary mesencephalic cultures from wild-type mice. These outcomes, however, were not observed in cultures from D2R knock-out mice. Our findings show that D2R-mediated ERK activation regulates mesencephalic dopaminergic neuron development via EGF receptor transactivation through ADAM10/17.  相似文献   

4.
MVA is an attenuated strain of vaccinia virus (VACV) that is a popular vaccine vector. MVA infection activates NF-κB. For 293T cells, it is known that MVA early gene expression activates extracellular signal-regulated kinase 2 (ERK2), resulting in NF-κB activation. However, other viral and cellular mechanisms responsible for this event are ill defined. The data presented here show that the epidermal growth factor receptor (EGFR) is at least one apical trigger in this pathway: ERK2 and NF-κB activation was diminished when MVA infections occurred in cells devoid of the EGFR (CHO K1 cells) or in the presence of a drug that inhibits EGFR activation (AG1478) in 293T cells. The expression of dominant negative Ras or Raf proteins still permitted NF-κB activation, suggesting that a nonclassical EGFR-based signal transduction pathway triggered ERK2-NF-κB activation. C11R is an early gene present in MVA and other orthopoxviruses. It encodes the soluble, secreted vaccinia virus growth factor (VGF), a protein that binds to and stimulates the EGFR. Here it was observed that NF-κB was activated in 293T cells transfected with a plasmid encoding the C11R gene. Silencing by small interfering RNA (siRNA) or deletion of the C11R gene (MVAΔC11R) reduced both MVA-induced ERK2 and NF-κB activation in 293T cells or the keratinocyte line Hacat, suggesting that this mechanism of MVA-induced NF-κB activation may be common for several cell types.  相似文献   

5.
The D(2) and D(3) receptors (D(2)R and D(3)R), which are potential targets for antipsychotic drugs, have a similar structural architecture and signaling pathway. Furthermore, in some brain regions they are expressed in the same cells, suggesting that differences between the two receptors might lie in other properties such as their regulation. In this study we investigated, using COS-7 and HEK-293 cells, the mechanism underlying the intracellular trafficking of the D(2)R and D(3)R. Activation of D(2)R caused G protein-coupled receptor kinase-dependent receptor phosphorylation, a robust translocation of beta-arrestin to the cell membrane, and profound receptor internalization. The internalization of the D(2)R was dynamin-dependent, suggesting that a clathrin-coated endocytic pathway is involved. In addition, the D(2)R, upon agonist-mediated internalization, localized to intracellular compartments distinct from those utilized by the beta(2)-adrenergic receptor. However, in the case of the D(3)R, only subtle agonist-mediated receptor phosphorylation, beta-arrestin translocation to the plasma membrane, and receptor internalization were observed. Interchange of the second and third intracellular loops of the D(2)R and D(3)R reversed their phenotypes, implicating these regions in the regulatory properties of the two receptors. Our studies thus indicate that functional distinctions between the D(2)R and D(3)R may be found in their desensitization and cellular trafficking properties. The differences in their regulatory properties suggest that they have distinct physiological roles in the brain.  相似文献   

6.
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.  相似文献   

7.
ERK activation by dopamine D2 receptor (D2R) has been extensively characterized in various cell types including brain tissues. However, the involvement of β-arrestin in the D2R-mediated ERK activation is not clear yet. Three different strategies were employed in this study to determine the roles of G protein or β-arrestin in D2R-mediated ERK activation. The cellular level of β-arrestins was reduced by RNA interference and pertussis toxin-insensitive Gi proteins were used to identify the G protein involved. Finally point mutations of D2R in which coupling with G protein was abolished but the interaction with β-arrestin was increased, were employed to determine whether the affinity between D2R and β-arrestin is a critical factor for β-arrestin-mediated ERK activation. Our results show that Gi2 protein is involved in D2R-mediated ERK activation but β-arrestins are either not involved or play minor role.  相似文献   

8.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

9.
The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.  相似文献   

10.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

11.
Phospholipase D (PLD) is expressed in many tissues and stimulated by growth factors and cytokines. However, the role of PLD in signal transduction is still not well-understood. Human embryonic kidney (HEK-293) cells exhibit low levels of both PLD1 and PLD2 mRNA, however, only PLD1 protein was detected by Western blot. When either isoform of PLD was stably expressed in HEK-293 cells, we observed an increased PLD activity in a cell-free system and a 12-O-tetradecanoyl-13-phorbol acetate (TPA)-stimulated increase in PLD activity in intact cells. This system was then used to elucidate the effects of PLD activity on TPA-stimulated signaling pathways. Two such pathways, the mitogen-activated protein kinases (MAPK), extracellular regulated protein kinase (ERK) and p38 are activated by growth factors and cellular stress, respectively. We found that TPA stimulated ERK phosphorylation regardless of the expression status of PLD. In contrast to ERK kinase, HEK-293 cells were unable to induce p38 phosphorylation by TPA stimulation. When HEK-293 cells expressed either PLD1 or PLD2, we observed elevated p38 phosphorylation in response to TPA stimulation. The ERK and p38 MAPKs can also stimulate the expression of both cyclooxygenase-2 (Cox-2) and interleukin-8 (IL-8). We used this system to differentiate the effect of PLD1 or PLD2 activity on the expression of Cox-2 and IL-8. Increased Cox-2 and IL-8 expression was found only in HEK-293 cells expressing PLD1. These data identify a novel role for the PLD1 isoform in the induction of gene expression and provide new insight into the differential role of PLD1 and PLD2 in cells.  相似文献   

12.
The V2 vasopressin receptor (V2R) activates the mitogen activated protein kinases (MAPK) ERK1/2 through a mechanism involving the scaffolding protein beta arrestin. Here we report that this activating pathway is independent of G alpha s, G alpha i, G alpha q or G betagamma and that the V2R-mediated activation of G alpha s inhibits ERK1/2 activity in a cAMP/PKA-dependent manner. In the HEK293 cells studied, the beta arrestin-promoted activation was found to dominate over the PKA-mediated inhibition of the pathway, leading to a strong vasopressin-stimulated ERK1/2 activation. Despite the strong MAPK activation and in contrast with other GPCR, V2R did not induce any significant increase in DNA synthesis, consistent with the notion that the stable interaction between V2R and beta arrestin prevents signal propagation to the nucleus. Beta arrestin was found to be essential for the ERK1/2 activation, indicating that the recruitment of the scaffolding protein is necessary and sufficient to initiate the signal in the absence of any other stimulatory cues. Based on the use of selective pharmacological inhibitors, dominant negative mutants and siRNA, we conclude that the beta arrestin-dependent activation of ERK1/2 by the V2R involves c-Src and a metalloproteinase-dependent trans-activation event. These findings demonstrate that beta arrestin is a genuine signalling initiator that can, on its own, engage a MAPK activation machinery upon stimulation of a GPCR by its natural ligand.  相似文献   

13.
Integrin-mediated cell adherence to extracellular matrix proteins results in stimulation of ERK1/2 activity, a mechanism involving focal adhesion tyrosine kinases (pp125FAK, Pyk-2) and epidermal growth factor receptors (EGFRs). G protein-coupled receptors (GPCRs) may also mediate ERK1/2 activation in an integrin-dependent manner, the underlying signaling mechanism of which still remains unclear. Here we demonstrate that the δ-opioid receptor (DOR), a typical GPCR, stimulates ERK1/2 activity in HEK293 cells via integrin-mediated transactivation of EGFR function. Inhibition of integrin signaling by RGDT peptides, cytochalasin, and by keeping the cells in suspension culture both blocked [D-Ala2, D-Leu5]enkephalin (DADLE)- and etorphine-stimulated ERK1/2 activity. Integrin-dependent ERK1/2 activation does not involve FAK/Pyk-2, because over-expression of the FAK/Pyk-2 inhibitor SOCS-3 failed to attenuate DOR signaling. Exposure of the cells to the EGFR inhibitors AG1478 and BPIQ-I blocked DOR-mediated ERK1/2 activation. Because RGDT peptides also prevented DOR-mediated EGFR activation, the present findings indicate that in HEK293 cells DOR-stimulated ERK1/2 activity is mediated by integrin-stimulated EGFRs. Further studies with the phospholipase C (PLC) inhibitors U73122 and ET-18-OCH3 revealed that opioid-stimulated integrin activation is sensitive to PLC. In contrast, integrin-mediated transactivation of EGFR function appears to be dependent on PKC-δ, as indicated by studies with rottlerin and siRNA knock-down. A similar ERK1/2 signaling pathway was observed for NG108-15 cells, a neuronal cell line endogenously expressing the DOR. In these cells, the nerve growth factor TrkA receptor replaces the EGFR in connecting DOR-activated integrins to the Ras/Raf/ERK1/2 pathway. Together, these data describe an alternative ERK1/2 signaling pathway in which the DOR transactivates the growth factor receptor associated mitogen-activated protein kinase cascade in an integrin-dependent manner.  相似文献   

14.
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.  相似文献   

15.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

16.
17.
Kim SE  Choi KY 《Cellular signalling》2007,19(7):1554-1564
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.  相似文献   

18.
The blockade of heptahelical receptor coupling to heterotrimeric G proteins by the expression of peptides derived from G protein Galpha subunits represents a novel means of simultaneously inhibiting signals arising from multiple receptors that share a common G protein pool. Here we examined the mechanism of action and functional consequences of expression of an 83-amino acid polypeptide derived from the carboxyl terminus of Galpha(s) (GsCT). In membranes prepared from GsCT-expressing cells, the peptide blocked high affinity agonist binding to beta(2) adrenergic receptors (AR) and inhibited beta(2)AR-induced [35S]GTPgammaS loading of Galpha(s). GsCT expression inhibited beta(2)AR- and dopamine D(1A) receptor-mediated cAMP production, without affecting the cellular response to cholera toxin or forskolin, indicating that the peptide inhibited receptor-G(s) coupling without impairing G protein or adenylyl cyclase function. [35S]GTPgammaS loading of Galpha(q/11) by alpha(1B)ARs and Galpha(i) by alpha(2A)ARs and G(q/11)- or G(i)-mediated phosphatidylinositol hydrolysis was unaffected, indicating that the inhibitory effects of GsCT were selective for G(s). We next employed the GsCT construct to examine the complex role of G(s) in regulation of the ERK mitogen-activated protein kinase cascade, where activation of the cAMP-dependent protein kinase (PKA) pathway reportedly produces both stimulatory and inhibitory effects on heptahelical receptor-mediated ERK activation. For the beta(2)AR in HEK-293 cells, where PKA activity is required for ERK activation, expression of GsCT caused a net inhibition of ERK activation. In contrast, alpha(2A)AR-mediated ERK activation in COS-7 cells was enhanced by GsCT expression, consistent with the relief of a downstream inhibitory effect of PKA. ERK activation by the G(q/11)-coupled alpha(1B)AR was unaffected by GsCT. These findings suggest that peptide G protein inhibitors can provide insights into the complex interplay between G protein pools in cellular regulation.  相似文献   

19.
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.  相似文献   

20.
Stimulation of phospholipase D (PLD) by membrane receptors is now recognized as a major signal transduction pathway involved in diverse cellular functions. Rho proteins control receptor signaling to PLD, and these GTPases have been shown to directly stimulate purified recombinant PLD1 enzymes in vitro. Here we report that stimulation of PLD activity, measured in the presence of phosphatidylinositol 4,5-bisphosphate, by RhoA in membranes of HEK-293 cells expressing the m3 muscarinic acetylcholine receptor (mAChR) is phosphorylation-dependent. Therefore, the possible involvement of the RhoA-stimulated serine/threonine kinase, Rho-kinase, was investigated. Overexpression of Rho-kinase and constitutively active Rho-kinase (Rho-kinase-CAT) but not of kinase-deficient Rho-kinase-CAT markedly increased m3 mAChR-mediated but not protein kinase C-mediated PLD stimulation, similar to overexpression of RhoA. Expression of the Rho-inactivating C3 transferase abrogated the stimulatory effect of wild-type Rho-kinase, but not of Rho-kinase-CAT. Recombinant Rho-kinase-CAT mimicked the phosphorylation-dependent PLD stimulation by RhoA in HEK-293 cell membranes. Finally, the Rho-kinase inhibitor HA-1077 largely inhibited RhoA-induced PLD stimulation in membranes as well as PLD stimulation by the m3 mAChR but not by protein kinase C in intact HEK-293 cells. We conclude that Rho-kinase is involved in Rho-dependent PLD stimulation by the G protein-coupled m3 mAChR in HEK-293 cells. Thus, our findings identify Rho-kinase as a novel player in the receptor-controlled PLD signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号