首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

2.
干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响   总被引:148,自引:6,他引:148  
李明  王根轩 《生态学报》2002,22(4):503-507
甘草(Glycyrrhiza uralensis Fisch.)幼苗用PEG6000(-2.5Mpa,-1.5Mpa)模拟干旱处理,测定了4d中叶的MDA含量,膜相对透性及几种保护酶(SOD,POD,ASP,CAT)活性变化情况。结果表明:-2.5Mpa胁迫下,MDA含量总体呈上升趋势;-1.5Mpa胁迫下,前两天略有降低,至第4天时,上升到与处理前基本持平的水平。细胞膜透性在处理前期下降,后期升高,低渗透胁迫较高渗透胁迫变化平缓。几种保护酶活性在干旱处理期间都有变化,POD除第1天降低外,其余几天均呈上升趋势;在处理前期,SOD活性升高,CAT活性下降,而在后期其变化为SOD活性降低,CAT活性升高,ASP活性变化波动较大,-2.5Mpa胁迫下,第1,第3天有两次上升峰,第4天较处理前下降了104.3%。在-1.5Mpa胁迫下的几种保护酶活性变化幅度较小。表明了高渗透胁迫能使膜过氧化而引起膜的损伤,低渗透胁迫程度对细胞膜脂过氧化及膜的透性影响较小,且可能对膜脂过氧化起到一定的防御作用。植物在干旱胁迫下保护酶系统的作用,可能是通过它们之间相互且保持一个稳定的平衡态而进行的。  相似文献   

3.
4.
Using physiological assays coupled with ultrathin tissue sections, we investigated the impacts of exogenous selenium (Se) on the growth, antioxidant enzymes, osmotic regulation and ultrastructural modifications of leaf mesophyll and root tip cells of 100 mM NaCl-stressed sorrel (Rumex patientia × R. tianshanicus) seedlings. At low concentrations (1–5 M), Se tended to stimulate the growth, the activities of superoxide dismutase and peroxidase enzymes, as well as the accumulation of water-soluble sugar in leaves of sorrel seedlings. At higher concentrations (10–30 M), Se exerted diminished beneficial effects on growth and enzyme activities. CAT activity did not change with Se addition (1–30 M). Electrolyte leakage of leaf cells declined, and K+ and Na+ ions increased in leaves with Se treatment, notably at 5 M of Se. TEM observations revealed that treatment with 5 M of Se positively promoted the integrity of membrane systems and cellular organelles, such as chloroplasts and mitochondria in leaf mesophyll and root tip cells. These results strongly suggest that an appropriate concentration of exogenous Se functions positively to promote the antioxidative and osmoregulatory capacity, and enhance the salt-resistance in sorrel seedlings.  相似文献   

5.
在CO2浓度分别为350μmol·mol-1和倍增浓度(700μmol·mol-1)的两个开顶式生长室内,研究了干旱胁迫下小麦(Triticum aestivum L.)光合作用和抗氧化酶活性的变化.结果表明,CO2浓度升高显著提高了小麦的净光合速率,降低了蒸腾速率,提高了气孔阻力和水分利用效率.倍增CO2浓度明显提高了SOD、POD及CAT酶活性,增强了小麦的抗氧化保护能力和抗旱性.  相似文献   

6.
在CO2 浓度分别为 35 0 μmol·mol-1和倍增浓度 (70 0 μmol·mol-1)的两个开顶式生长室内 ,研究了干旱胁迫下小麦 (TriticumaestivumL .)光合作用和抗氧化酶活性的变化 .结果表明 ,CO2 浓度升高显著提高了小麦的净光合速率 ,降低了蒸腾速率 ,提高了气孔阻力和水分利用效率 .倍增CO2 浓度明显提高了SOD、POD及CAT酶活性 ,增强了小麦的抗氧化保护能力和抗旱性 .  相似文献   

7.
Chitosan is a cationic marine polysaccharide with unique bioactive properties that make it an effective scavenger of reactive oxygen species. Chitosan application has been suggested as an aid for reducing oxidative injury caused by drought stress in crop plants. In order to confirm the antioxidant effects of exogenous chitosan, cell membrane stability and antioxidant enzyme activities were analyzed in leaves of apple seedlings placed under a period of drought stress. Pretreatment of apple seedling leaves with chitosan solution (20, 50, 100, 150 and 200 mg l−1) prior to drought stress significantly decreased electrolyte leakage and the production of malondialdehyde in the leaves, while increasing antioxidant enzyme activities (superoxide dismutase, catalase), following imposition of drought stress conditions. An optimum response was obtained at a chitosan concentration of 100 mg l−1. When apple seedlings were pretreated with 100 mg l−1 of chitosan, cell membrane stability and antioxidant enzyme activities were enhanced for 21 days of drought treatment. Following restoration of moisture and a repeated drought stress, similar results were obtained on day 35. It is proposed that chitosan may act as an exogenous antioxidant that enhances resistance to oxidative stress during drought.  相似文献   

8.
Zhang  Wenjin  Xie  Zhicai  Wang  Lianhong  Li  Ming  Lang  Duoyong  Zhang  Xinhui 《Journal of plant research》2017,130(3):611-624
Journal of Plant Research - This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the...  相似文献   

9.
10.
Proline and betaine accumulate in plant cells under environmental stresses including salt stress. Here, we investigated effects of proline and betaine on the growth and activities of antioxidant enzymes in tobacco Bright Yellow-2 (BY-2) culture cells in suspension under salt stress. Both proline and betaine mitigated the inhibition of growth of BY-2 cells under salt stress and the mitigating effect of proline was more than that of betaine. Salt stress significantly decreased the activities of superoxide dismutase (SOD), catalase and peroxidase in BY-2 cells. Exogenous application of proline or betaine alleviated the reduction in catalase and peroxidase activities but not SOD activity under salt stress. In addition, proline was found to be effective in alleviating the inhibition of salt stress-induced catalase and peroxidase activities in BY-2 cells. Neither proline nor betaine directly scavenged superoxide (O(2)(-)) or hydrogen peroxide (H(2)O(2)). It is concluded that exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine because of its superior ability to increase the activities of antioxidant enzymes.  相似文献   

11.
Changes in the antioxidative enzyme activities (SOD, CuZnSOD, GSH-Px, GST), as well as TBARS content in 5-week-old tomato (Lycopersicon esculentum Mill. cv “Perkoz”) roots were examined 1, 3 h (short-term stress) and 1–14 days (long-term stress) after a single application of 50 mM (mild stress) and 150 mM NaCl (severe stress). The severe stress caused an increase in GST, GSH-Px and SODs activities from the beginning of the experiment while mild stress induced enhancement of GST activity from the second day of experiment. The maximum increase in SODs after both NaCl solutions were applied and in GST activity after the higher NaCl dose on the second day of the experiment was observed. Moreover, after 1 h of NaCl treatment with both tested NaCl solutions, the highest induction of GSH-Px activity appeared. TBARS content was elevated from the first hour of salt stress and decreased only 14 days after 50 mM NaCl application which was accompanied by high induction of GSH-Px activity. In conclusion, enhanced activities of tested enzymes indicate their involvement in early and late defence systems under salinity stress. Moreover, the dynamics of the changes in the antioxidant enzymes suggests that the second day following NaCl application is a crucial moment of the experiment with regard to salt-mediated oxidative stress.  相似文献   

12.
小金蝠蛾Hepialus xiaojinensis Tu.是我国名贵中药材冬虫夏草的寄主昆虫之一,适宜在高海拔低温地区(8℃-12℃)生存。本文研究了小金蝠蛾在不同温度(4℃、12℃、16℃、20℃、24℃、28℃)条件下处理4 h和12 h后4龄幼虫体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、谷胱甘肽硫转移酶(GSTs)的活力变化,以及总抗氧化能力(T-AOC)和丙二醛(MDA)含量的变化。结果表明,小金蝠蛾在正常生长发育情况下SOD具有较高活性;经温度胁迫后,SOD活力持续维持在较高活性,CAT、POD活性以及T-AOC活性显著性升高(P0.05);GSTs在24℃以上活性有降低趋势,MDA含量有上升趋势。  相似文献   

13.
Lee MY 《Phytochemistry》2002,59(5):493-499
This study investigated the effects of Na(2)SO(3), which releases SO(2) in apoplastic water, on the growth of geranium seedlings and on the activities of various antioxidant enzymes including peroxidase. Sodium sulfite (Na(2)SO(3)) addition both inhibited primary root growth and stimulated lateral root growth of the seedlings respectively. In addition, the contents of chlorophyll and Rubisco protein of the seedlings were greatly reduced with Na(2)SO(3) treatment. Total peroxidase activities of the seedlings also increased proportionally with the amount of Na(2)SO(3), this presumably correlating with oxidative stress levels. Notably, about an 8-fold enhancement of total peroxidase activity occurred in seedlings treated with 60 nM Na(2)SO(3) at pH 4.0. This enhancement of total peroxidase activity was mainly due to the increase of a strong cationic isoperoxidase, strong anionic isoperoxidase and neutral isoperoxidase activities. The strong cationic isoperoxidase from geranium seedlings was found to be the same enzyme as PC3 from geranium callus in terms of its physicochemical and catalytic properties. Moreover, the activities of superoxide dismutase and glutathione reductase were greatly enhanced with Na(2)SO(3) treatments at pH 4.0 without significant alteration of catalase activity. These results suggest that Na(2)SO(3) exposure, activities the plants defense mechanism against the reactive oxygen species generated.  相似文献   

14.
Tall fescue (Festuca arundinacea Schreb.) is a cool-season perennial grass, which has been conventionally grown in the temperate area. However, as a major type of cool-season turf grass, its growth has been extended to the sub-tropical climate or even to the transitional climate between the sub-tropical and the tropical, and, in some cases, to heavily salinized lands. The extended growth imposes a serious challenge to its tolerance to the abiotic stress, particularly to drought, salt and high temperature. Here, we report a successful introduction of Arabidopsis AtHDG11 into the tall fescue via Agrobacterium-mediated transformation. The ectopic overexpression of AtHDG11 under the control of CaMV 35S promoter with four enhancers resulted in significantly enhanced tolerance to drought and salt stress. No obvious adverse effects on growth and development were observed in the transgenic plants. The enhanced stress tolerance was associated with a more extensive root system, a lower level of malondialdehyde, a nearly normal Na+/K+ ratio, a higher level of proline and a kinetically accelerated induction of SOD and CAT activities observed in the transgenic plants during drought and/or salt stress, indicating that an enhanced ROS scavenging capability might play a significant role in the acquired tolerance to the abiotic stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ya-Jun Cao and Qiang Wei contributed equally to this work.  相似文献   

15.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

16.
In plants of wheat (Triticum aestivum L.) grown in the media with nitrate (NO 3 ? plants), ammonium (NH 4 + plants), and without nitrogen (N-deficient plants), the response to oxidative stress induced by the addition of 300 mM NaCl to the nutrient solution was investigated. Three-day-long salinization induced chlorophyll degradation and accumulation of malondialdehyde (MDA) in the leaves. These signs of oxidative stress were clearly expressed in NO 3 ? and N-deficient plants and weakly manifested in NH 4 + plants. In none of the treatments, salinization induced the accumulation of MDA in the roots. Depending on the conditions of N nutrition, salt stress was accompanied by diverse changes in the activity of antioxidant enzymes in the leaves and roots. Resistance of leaves of NH 4 + plants to oxidative stress correlated with a considerable increase in the activities of ascorbate peroxidase and glutathione reductase. Thus, wheat plants grown on the NH 4 + -containing medium were more resistant to the development of oxidative stress in the leaves than those supplied with nitrate.  相似文献   

17.
50和100mmol·L-1NaCl有利于甘草幼苗根部甘草酸积累。在200mmol·L-1NaCl胁迫下喷施甘草酸(5mmol·L-1),可以明显促进根的生长,提高叶片中叶绿素含量和叶绿素荧光参数Fv/Fm,降低叶片电导率、可溶性糖和脯氨酸含量,增加根部甘草酸含量。  相似文献   

18.
19.
低温胁迫对两种圆柏属植物亚细胞抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
以祁连圆柏和圆柏幼苗为材料,研究不同处理时间下低温胁迫对圆柏属植物叶片亚细胞抗氧化酶活性的影响,探讨其在圆柏属植物叶片中的亚细胞定位。结果表明:低温胁迫下,丙二醛(MDA)含量和抗氧化酶活性随时间变化均呈先升后降趋势,祁连圆柏中抗氧化酶的种类比圆柏的多且活性强,而 MDA 含量低于圆柏,表明祁连圆柏在低温胁迫下具有更广泛的适应性。此外,两种圆柏植物叶片超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)定位为叶绿体>细胞溶质>线粒体,过氧化氢酶(CAT)定位为线粒体>叶绿体>细胞溶质,谷胱甘肽还原酶(GR)定位为线粒体>细胞溶质>叶绿体,祁连圆柏过氧化物酶(POD)定位为细胞溶质>叶绿体>线粒体,圆柏POD定位为细胞溶质>线粒体>叶绿体,且抗氧化酶SOD、APX和 GR在亚细胞中分布差异达到极显著,这说明抗氧化酶在其中一种亚细胞中发挥主要作用,为克隆亚细胞组分中的抗氧化酶基因提供了理论依据。  相似文献   

20.
The present study evaluates the effects of severe drought stress on the content of phenolic compounds in olive leaves, namely hydroxytyrosol, tyrosol, p-hydroxybenzoic acid, catechin, luteolin 7-O-rutinoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, quercetin, apigenin, pinoresinol, oleuropein and verbascoside in greenhouse-grown plantlets. The results showed that oleuropein, verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside were the most important phenolic compound of stressed olive plants and can represent up to 84% of the total amount of the identified phenolic compounds. Application of drought stress caused a significant increase in the level of oleuropein (87%), verbascoside (78%), luteolin 7-O-glucoside (72%) and apigenin 7-O-glucoside (85%), when compared to the control. The elevated values of these phenolic compounds can help controlling the water status of olive plants and avoiding serious oxidative damage induced by water deficit stress. To our knowledge, this is the first report to show the boost in the concentrations of verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside in the leaves of olive trees after water deficit stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号