首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invasive aliens and sampling bias   总被引:5,自引:1,他引:4  
Two hypotheses have been proposed to explain the observation of increased vigour of invasive alien plants in their nonindigenous ranges: phenotypic plasticity, and the post‐invasion evolution of increased competitive ability (EICA). Here I specify how a general pattern of increased vigour may result from sampling bias. Ignoring failed invasions can account for the illusion of increased vigour over a broad range of assumptions. Plasticity and EICA need not be viewed as explanations for a general pattern of increased vigour even if they are the mechanisms underlying every occurrence.  相似文献   

2.
Southeast Asia is rapidly losing native habitats and the consequences of this are poorly understood. Because habitat loss and disturbance can affect avian and seed survivorship, we conducted artificial nest and seed predation experiments on tropical southeast Asian islands. Data among islands and fragments or different forest types (e.g. primary versus exotic forest) within the islands are compared. On Singapore Island, predation among different forest types (primary, secondary and woodland) did not differ. Only at one of the sites, nest predation was higher at 75 m from the forest edge than at 25 m. In other sites, predation did not differ in relation to the distance from the forest edge. Predation among 10 small (0.8–1026 ha) Singaporean islands differed. However, none of the environmental variables (e.g. island area) could explain the predation differences. The lowest predation of both nests and seeds was recorded in the primary forest areas of a contiguous forest (25 500 ha) in central Java (Linggoasri). Small mammals were the main predators on Singapore and other surrounding islands. However, the index of potential predator abundance, overall, did not correlate with predation. While larger and more pristine forests may be better for avian and seed survivorship, pinpointing variables affecting both artificial nest and seed predation may be difficult.  相似文献   

3.
Lee YH  Lin CP 《Molecular ecology》2012,21(15):3739-3756
Climatic oscillations during the Pleistocene period could have had a profound impact on the origin of tropical species by the alternation of allopatric isolation and interpopulation gene flow cycles. However, whether tropical speciation involves strictly allopatric isolation, or proceeds in the face of homogenizing gene flow, is relatively unclear. Here, we investigated geographical modes of speciation in four closely related Euphaea damselfly species endemic to the subtropical and tropical East Asian islands using coalescent analyses of a multilocus data set. The reconstructed phylogenies demonstrated distinct species status for each of the four species and the existence of two sister species pairs, Euphaea formosa/E. yayeyamana and E. decorata/E. ornata. The species divergence time of the sibling Euphaea damselflies dates back to within the last one Mya of the Middle to Lower Pleistocene. The speciation between the populous E. formosa of Taiwan and the less numerous E. yayeyamana of the Yaeyama islands occurred despite significant bidirectional, asymmetric gene flow, which is strongly inconsistent with a strictly allopatric model. In contrast, speciation of the approximately equal-sized populations of E. decorata of the southeast Asian mainland and E. ornata of Hainan is inferred to have involved allopatric divergence without gene flow. Our findings suggest that differential selection of natural or sexual environments is a prominent driver of species divergence in subtropical E. formosa and E. yayeyamana; whereas for tropical E. decorata and E. ornata at lower latitudes, allopatric isolation may well be a pivotal promoter of species formation.  相似文献   

4.
Invasive rats on oceanic islands impact a large number of native species. Control programmes, and in many cases complete eradication, are used to alleviate these impacts. Basic data on rodent biology facilitate the design of control or eradication programmes, and is particularly required for programmes on tropical islands where such data are missing. Here we test for interactive effects of habitat and season that may alter black rat (Rattus rattus) space use dynamics and inform rodent management on two tropical islands. Five years of summer and winter trapping data were analysed using spatially explicit capture–recapture to calculate rat space-use and overlap, coupled with spool and line experiments ground-truthing microhabitat use. Variation in individual rat space use is primarily driven by sex and bottom-up trophic effects of seasonal rainfall on food resources, but is altered by island-specific contexts. In the absence of other introduced mammals, rats tend to have stable range overlap throughout the year but home range sizes fluctuate seasonally with rat density. The presence of other introduced mammals causes predictable greater seasonal fluctuations in rat space-use, putatively a behavioural adjustment to feral cats (Felis catus) diet-switching to rats from seasonal influxes of their alternative seabird prey. We identify winter as the recommended treatment period on both islands and discuss bait broadcast strategies.  相似文献   

5.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Rodents on tropical land-bridge islands   总被引:2,自引:0,他引:2  
The results are reported of a survey of rodents on 10 forested land-bridge islands ranging in size from 0.2 to 350 ha in the state of Bolívar, Venezuela. The islands were contained within a lake formed c. 12 years before the study by the damming of the Caroni River for hydroelectric power. Rodents were sampled on each island by live-trapping along transects that sampled all available habitat types on each island, and microhabitat structure was measured at each trap station. A total of 674 captures of 359 individuals of six species of rodents was recorded. Species composition changed from the largest to the smallest islands, and small and medium islands (0.2–11 ha) displayed the typical effects of insularity, with fewer species and increased abundances and biomass. The largest island (350 ha) seemed to function more like a mainland. Most species were associated with a suite of microhabitat variables. It is suggested that release from top-down control by predators was responsible for higher abundances and biomass on the smaller islands and that predators moving between large islands and other nearby landmasses help maintain a mainland community structure on large islands. However, changes in species composition on smaller islands may be the result of patchy occurrences of some species before isolation, changes in microhabitat structure following isolation, and species-specific microhabitat requirements.  相似文献   

7.
Biogeography of mammals on tropical Pacific islands   总被引:2,自引:0,他引:2  
Aim We examine the influence of geography on species richness and endemism of mammals on tropical Pacific archipelagos to determine the importance of intra‐ and inter‐archipelago speciation in promoting local and regional species richness. Location Thirty tropical Pacific archipelagos. Methods A distributional list of mammals on 30 archipelagos was compiled, and values for 10 geographical variables were estimated for each archipelago. Mammal species were placed in three different categories (continental, Pacific and endemic) based on their distribution. The total number of species and numbers of species within each category were related to the geographical variables using Poisson regression analysis. Results Species richness was related positively to variables describing land area, numbers of large islands and elevation; and negatively to variables describing isolation. Levels of endemism did not differ between volant and non‐volant species, but differed between mega‐ and microchiropterans. Main conclusions Variation in species richness of mammals in the tropical Pacific region can be accounted for by a combination of intra‐archipelago speciation within archipelagos composed of large islands, and inter‐archipelago speciation, particularly among more isolated archipelagos. Mammals were less widely distributed throughout the study area than previously found for butterflies, skinks or birds. However, the level of endemism was similar to that of skinks and birds on the same archipelagos, and was higher than that of butterflies.  相似文献   

8.
Butterfly distributions on 26 tropical Pacific archipelagos were analysed to examine the effects of geography on diversity and endemism. The total butterfly fauna for each archipelago was divided into continental (found also on continental areas), Pacific (found within more than one archipelago but not outside of the study area), and endemic species (restricted to a single archipelago). Numbers and proportions of each species were related to eight geographic variables by stepwise multiple linear regression analysis. Total area of an archipelago and distance from other land masses were important predictors of the number of species within an archipelago. Proportions of butterfly species in each category were related differently to the geographic variables, with endemism being promoted by the number of large islands within an archipelago. Relative to birds, butterflies have been less successful in colonizing remote archipelagos and have much lower levels of endemism. Even if colonization is successful, butterfly speciation may be constrained by the mechanics of coevolution with available host plants.  相似文献   

9.
The number of primate species and genera on thirty-one south-east Asian islands west of the Wallace Line, including Sulawesi, is highly significantly related to surface area of the islands, as expected, but the z value (slope) of each relationship is low (0.21 for species). No association exists between number of taxa and distance to nearest mainland, or to nearest larger island. Excluding the non-Sunda Shelf islands only negligibly changes the relationships. A significant correlation exists between island size and median taxon's body mass, with taxa of 10 kg or more occurring on only the two largest islands. Hence, the primate community changes greatly with island size. The existence of several genera, but no congeners, on small islands, and a checkerboard distribution of the two nocturnal genera (Nycticebus and Tarsius), hints at interspecific competition as a cause of extinction. It is suggested that for comparative purposes, genera/area analyses might be more useful than species/area analyses, because genera are more taxonomically stable, perhaps more comparable across deeper taxa, and might be a better indication of degree of variability.  相似文献   

10.
11.
Summary I analysed avifaunal data from 30 archipelagos and isolated islands in the tropical Pacific Ocean to examine the effects of geography on endemism. I divided the total bird species list (pelagic and migrant species excluded) for each island group into continental (also found outside of the study area), Pacific (found only within the study area but within more than one archipelago), and endemic (found only within a single archipelago) species and estimated ten variables related to the geography of each archipelago. I used multiple linear regression analysis to relate numbers and proportions of species in each category to the geographical variables. Total land area of an archipelago was the most improtant variable in explaining variation in the number of species in each category, with elevation and isolation also being important. The relationships between the proportions of species in each category and the geographical variables underscore the importance of isolation and the number of large islands in promoting endemism, presumably by allowing both inter- and intra-archipelagal speciation to proceed.  相似文献   

12.
Invasive species pose significant threats to biodiversity, especially on islands. They cause extinctions and population declines, yet little is known about their consequences on the emergent, metacommunity-level patterns of native species in island assemblages. We investigated differences in species–area relationships, nestedness, and occupancy of 9 species of native land birds between island assemblages with and without invasive Norway rats (Rattus norvegicus) in the Falkland Archipelago. We found that species–area curves, nestedness, and individual species’ occurrences differed between island assemblages with and without rats. Rat-free islands had, on average, 2.1 more land bird species than rat-infested islands of similar size. Passerine bird communities on islands with and without rats were significantly nested, but nestedness was significantly higher on rat-free islands than on rat-infested islands. The presence of rats was associated with differences in the incidence of many, but not all bird species. On rat free islands the occurrence of all species increased with island area. The occurrence of most, albeit not all, bird species was lower on islands with than on islands without rats. Two species of conservation concern, Troglodytes aedon cobbi and Cinclodes antarcticus, were abundant on rat-free islands, but absent or found at very low frequencies on islands with rats. The occurrence of three species was not associated with the presence of rats. The patterns presented here can be used to evaluate the consequences of ongoing rat eradications for passerine diversity, distribution, and abundance.  相似文献   

13.
14.
15.
Invasive rats (Rattus rattus, R. norvegicus, R. exulans) have large impacts on island habitats through both direct and indirect effects on plants. Rats affect vegetation by extirpating burrowing seabirds through consumption of eggs, chicks, and adults. These seabirds serve as ecosystem engineers, affecting plant communities by burying and trampling seeds and seedlings, and by altering microclimate. Rats also directly affect plant communities by consuming seeds and seedlings. We studied the direct and indirect impacts of rats on the seedlings of woody plants on 21 islands in northern New Zealand. We compared seedling densities and richness on islands which differed in status with respect to rats: nine islands where rats never invaded, seven islands where rats were present at the time of our study, and five islands where rats were either eradicated or where populations were likely to be small as a result of repeated eradications and re-invasions. In addition, we compared plots from a subset of the 21 islands with different burrow densities to examine the effects of burrowing seabirds on plants while controlling for other factors that differ between islands. We categorized plant communities by species composition and seedling density in a cluster analysis. We found that burrow densities explained more variation in seedling communities than rat status. In areas with high seabird burrow density seedling densities were low, especially for the smallest seedlings. Species richness and diversity of seedlings, but not seedling density, were most influenced by changes in microclimate induced by seabirds. Islands where rats had been eradicated or that had low rat populations had the lowest diversity and richness of seedlings (and adults), but the highest seedling density. Seedling communities on these islands were dominated by Pseudopanax lessonii and Coprosma macrocarpa. This indicates lasting effects of rats that may prevent islands from returning to pre-invasion states.  相似文献   

16.
An analysis of the floating islands of Kuttanad–Vembanad Wetland Ecosystem (KVWE) was conducted as part of a major study on aquatic macrophyte vegetation of Kuttanad from November 2004 to November 2006. The study revealed that there are three types of floating islands in KVWE which vary considerably in their origin, development, species composition, community and physical structure and sustenance even though there are common vegetation elements. Among the three types the type-1 which formed in deep excavated portions of abandoned rice fields is found as the biotic climax in the ecological succession. Continuous abandoning of rice fields, stagnation, nutrient enrichment, proliferation of exotic invasive plants and less salinity and tidal flow are the major ecological factors which are found promoting this recent formation of floating islands here indicating the level of deterioration of the ecosystem. KVWE is one of the fast changing wetland sites of the world located in the State of Kerala, India with well developed and ancient culture, economy, art and rich biodiversity. Rice cultivation need to be promoted at all costs in order to save this wetland.  相似文献   

17.
Diversity patterns are determined by biogeographic, energetic, and anthropogenic factors, yet few studies have combined them into a large‐scale framework in order to decouple and compare their relative effects on fish faunas. Using an empirical dataset derived from 1527 underwater visual censuses (UVC) at 18 oceanic islands (five different marine provinces), we determined the relative influence of such factors on reef fish species richness, functional dispersion, density and biomass estimated from each UVC unit. Species richness presented low variation but was high at large island sites. High functional dispersion, density, and biomass were found at islands with large local species pool and distance from nearest reef. Primary productivity positively affected fish richness, density and biomass confirming that more productive areas support larger populations, and higher biomass and richness on oceanic islands. Islands densely populated by humans had lower fish species richness and biomass reflecting anthropogenic effects. Species richness, functional dispersion, and biomass were positively related to distance from the mainland. Overall, species richness and fish density were mainly influenced by biogeographical and energetic factors, whereas functional dispersion and biomass were strongly influenced by anthropogenic factors. Our results extend previous hypotheses for different assemblage metrics estimated from empirical data and confirm the negative impact of humans on fish assemblages, highlighting the need for conservation of oceanic islands.  相似文献   

18.
19.
20.
Aim To create a map of bird species richness (BSR) in East Asia and to examine the effect of area, isolation, primary productivity, topographic heterogeneity, and human population density on BSR. Location East Asia (from 70° E to 180° E longitude), including the eastern half of the Palaearctic Region, the entire Oriental Region, and the entire Wallacea Subregion. Methods The breeding ranges of 2406 terrestrial bird species were mapped and overlaid to create a species richness map. The BSR map was transformed into a 100 × 100 km quadrat system, and BSR was analysed in relation to land area, average normalized difference vegetation index (NDVI), elevation range, and average population density. Results In general, BSR declined from the Tropics to the Arctic. In mainland East Asia, however, BSR was highest around the Tropic of Cancer, and fluctuated between 30° and 50° N. Islands had lower BSR than adjacent mainland areas. The NDVI was strongly positively correlated with BSR in mainland areas and on islands. For mainland areas, NDVI explained 65% of the BSR variation, and topographic heterogeneity explained an additional 6% in ordinary least‐squares regression. On islands, NDVI explained 66% of BSR variation, island area explained 13%, and distance to mainland accounted for 1%. Main conclusions In East Asia, we suggest that primary productivity is the key factor underpinning patterns of BSR. Primary productivity sets the upper limits of the capacity of habitats to support bird species. In isolated areas such as islands and peninsulas, however, BSR might not reach the richness limits set by primary productivity because the degree of isolation and area size also can affect species richness. Other factors, such as spatial heterogeneity, biotic interactions, and perturbations, may also affect species richness. However, their effects are secondary and are not as strong as primary productivity, isolation, and area size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号