首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Restriction site analysis of mtDNA of 550 isofemale lines corresponding to different seasonal samples of a single geographic population of Drosophila subobscura was carried out. The distribution pattern of haplotypes was similar to that observed for the entire range of the species on the European continent: two haplotypes were equally and highly frequent, and a set of sporadic haplotypes were almost never present in more than one seasonal sampling. No statistically significant evidence was found for between-population heterogeneity across time, and the mean within-population variation was similar to other mtDNA restriction site analyses previously reported for D. subobscura populations. These observations could be interpreted in terms of the neutral mutation hypothesis where the entire population has not yet reached an equilibrium. The causes of this non-equilibrium are most likely periodic winter bottlenecks, phenomena that particularly affect the distribution of mtDNA haplotypes across time.  相似文献   

2.
Phylogeography of southern Asian Dolly Varden char was studied using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained using PCR-RFLP analysis. Analysis of contemporary population genetic structure showed that Salvelinus malma krascheninnikovi throughout the whole species range was characterized by high population differentiation in combination with rather small differences between the populations from remote regions. The genealogy of mtDNA haplotypes was reconstructed and nested clade analysis of geographical distances was performed. Geographical distribution of mtDNA haplotypes of S. m. krascheninnikovi was explained by population genetic processes (restricted gene flow), as well as by historical demographic events (range expansion and fragmentation). It was demonstrated that the main demographic events were associated with cyclic processes of the geological formation of the Sea of Japan and adjacent territories. Furthermore, genealogical tree of S. m. krascheninnikovi contained the traces of secondary contact between isolated phylogeographical lineages.  相似文献   

3.
The mussel Mytilus trossulus is an important component of the Baltic brackish water ecosystem. The genetic structure of mussel (M. trossulus) populations was studied in sites along the Polish coast, Southern Baltic for two segments of mitochondrial DNA (mtDNA). The mode of inheritance of Mytilus mtDNA is termed doubly uniparental; two genomes are passed independently down the female (the F genome) and male (the M genome) lines of descent. The M genome has not been detected at high frequency in M. trossulus, thus the present study focuses on the F genome. PCR and RFLP analysis was used to characterise haplotypes in the coding region ND2-COIII; PCR was used to detect length variants in a major noncoding region. Significant differentiation between populations was observed in the frequency of 24 coding region haplotypes and 14 different length variants. For the three most frequent coding region haplotypes, two (I and III) are associated with the length variants, whereas the third (II) is monomorphic for a single variant of short length. It is suggested that variant II is derived by introgression from a related species, M. edulis, and may be resistant to expansion in the noncoding region. In both regions studied, the Ewens–Watterson test reveals significant deviations from neutrality with an excess of rare variants. This might be due to selection against slightly deleterious variants and is consistent with previously published results for Mytilus taxa. The present study also points towards the potential utility of mtDNA length variation in studies of population differentiation of Mytilus.  相似文献   

4.
Combining morphological, ecological and genetic analyses, we compared patterns of diversification within and among populations of the southern Siberian whitefish species Coregonus lavaretus pidschian (Gmelin) to illuminate their evolutionary history. Using sequencing data from 1,930 bp of NADH dehydrogenase subunit 1 (ND1) mitochondrial DNA regions, we documented phylogeographic relationships among populations and developed a phylogeny of mtDNA haplotypes. We found significant differences in the perforated lateral-line scale numbers within and between some populations. Clear differences in the number of gill rakers on the first branchial arch were only exhibited between populations of C. l. pidschian and Coregonus lavaretus pravdinellus Dulkeit. Concordance between different morphological groups based on two meristic traits and mtDNA patterns was also tested.  相似文献   

5.
The northern Dolly Varden, Salvelinus malma malma, is a typical representative of arctic fauna distributed in northeastern Asia and northwestern North America. Because its spawning habitats were affected by Pleistocene glacial advances over most of its natural range, S. m. malma is among the most interesting objects of phylogeographic and microevolutionary studies. We reconstructed the genealogy of mtDNA haplotypes from 27 Alaskan and Asian populations to study the influence of glacial and geological vicariance events on the contemporary population genetic structure, phylogeographic subdivision and distribution of the northern Dolly Varden. Analysis of restriction site states in three PCR‐amplified mtDNA regions (ND1/ND2, ND5/ND6, Cytb/D‐loop; 47% of the mitochondrial genome) resolved 75 haplotypes in 436 fish. Similar patterns of subspecific variation apparent from hierarchical diversity and nested clade analyses of mtDNA haplotypes identify weak spatial differentiation and low levels of divergence. Our results suggest that (1) demographic history has been influenced by historical range expansions and recent isolation by distance, (2) present populations from Asia and North America were colonized from one main Beringian Refugium, and (3) that this taxon's ancestral population probably experienced a bottleneck in the Beringian Refugium during the late Pleistocene (Wisconsin) glacial period.  相似文献   

6.
Genetic differentiation of two sympatric char species, the Dolly Varden char (Salvelinus malma Walbaum) and the Taranetz char (S. taranetzi Kaganovski), has been studied. Restriction fragment length polymorphism (RFLP) analysis has been used to compare three mitochondrial DNA (mtDNA) fragments (ND1/ND2, ND5/ND6, and Cytb/D-loop) amplified via polymerase chain reaction (PCR). The divergence between S. malma and S. taranetzi inferred from mtDNA nucleotide sequences is 2.8%; between S. leucomaenis and S. taranetzi, 7.1%; and between S. malma and S. leucomaenis, 7.5%. The absence of common haplotypes and the degree of divergence indicate that the Dolly Varden char and the Taranetz char are genetically isolated and confirm that S. taranetzimay be regarded as a separate species.  相似文献   

7.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

8.
1. The genetic variation of the endangered freshwater fish Ladigesocypris ghigii, endemic to the island of Rhodes (Greece), was investigated for nine populations, originating from seven different stream systems and a reservoir, both at the mtDNA and nuclear level, in order to suggest conservation actions. 2. Both restriction fragment length polymorphism analysis of five segments of mitochondrial DNA (ND‐5/6, COI and 12S‐16S rRNA) amplified by polymerase chain reaction, and random amplified polymorphic DNA analysis, revealed extremely low levels of intra‐population polymorphism. It is highly likely that the low intra‐population variability is the result of successive bottleneck events evident in shrinkage and expansion of the populations year after year, which may have led to a complete loss of several genotypes and haplotypes, and an increased degree of inbreeding. 3. Inter‐population genetic structuring was high, with fixation of haplotypes within six of the nine populations and fixation of alleles within populations originating from different waterbodies. It is probable that all haplotypes and/or alleles found were initially represented in all populations. However, because of the long time of isolation coupled with successive bottleneck and subsequent genetic drift, common mtDNA haplotypes and alleles among the populations may have become rare or extinct through stochastic lineage loss. 4. Although nucleotide divergence among haplotypes was very shallow, half of the haplotypes recorded (three of six), resulted from nucleotide changes on the 12S–16S rRNA segments, which are the most conserved part of the mitochondrial genome. This fact may indicate that the observed genetic variation did not necessarily result only from the retention of ancestral polymorphism, but may have arisen through mutation and complete lineage sorting over a relatively small number of generations, once the populations had become isolated from one another. 5. Our data suggest that two of the L. ghigii populations may be on independent evolutionary trajectories. Considering that each population appears so far well adapted within each site, all populations should be managed and conserved separately.  相似文献   

9.
Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) is a native Australian Eucalyptus sap-feeding insect that has become invasive and seriously damaging to commercially grown Eucalyptus in the Southern Hemisphere. Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome c oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native C. noackae populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that C. noackae has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for C. noackae is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of T. peregrinus. If implemented as a biological control agent, this factor will need to be considered in collecting and releasing C. noackae.  相似文献   

10.
The phenomenon of interspecific hybridization accompanied by transfer of the mitochondrial genome from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (Cl. glareolus) in northeastern Europe is well known already for 25 years. However, the possibility of recombination between homologous segments of maternal and paternal mtDNAs of the voles during fertilization was not previously studied. Analysis of data on variability of nucleotide sequences of the mitochondrial gene for cytochrome b in populations of red-backed and bank voles in the area of their sympatry has shown that as a result of interspecific hybridization, the mitochondrial gene pool of bank voles contains not only mtDNA haplotypes of red-backed vole females, but also mtDNA haplotypes of bank voles bearing short nucleotide tracts of red-backed vole mtDNA. This finding supports the hypothesis that an incomplete elimination of red-backed vole paternal mtDNA during the interspecific hybridization between bank vole females and red-backed vole males leads to the gene conversion of bank vole maternal mtDNA tracts by homologous ones of mtDNA of red-backed vole males.  相似文献   

11.
We determined the complete mitochondrial genome sequences of two haplotypes of the smallmouth bass, Micropterus dolomieu; individuals used in the analysis were collected from nonindigenous populations in Japan. Both genomes comprised 16,488 bp, with genome contents and gene orders being identical to those of other teleost fishes. A previous study revealed that the Japanese smallmouth bass had only two haplotypes, and the present study revealed that the complete mitochondrial DNA (mtDNA) sequences of the haplotypes differed in only one nucleotide difference. The low genetic diversity in the mtDNA of the smallmouth bass individuals in our study and the results of the mtDNA sequence comparison between the Japanese and the North American individuals suggested that the fish had been transplanted from a fish farm with a low-diversity stock.  相似文献   

12.
We analyzed mtDNA polymorphisms (parts of control region, ND5, ND2, Cytb, 12S, together 902 bp) in 59 scat and 18 tissue samples from 13 Indian populations of the critically endangered Indian tiger (Panthera tigris tigris), along with zoo animals as reference. Northern tiger populations exhibit two unique haplotypes suggesting genetic isolation. Western populations from Sariska (extinct in 2004) and Ranthambore are genetically similar, such that Ranthambore could serve as a source for reintroduction in Sariska. Zoo populations maintain mitochondrial lineages that are rare or absent in the wild.  相似文献   

13.
The mitochondrial DNA (mtDNA) phylogeny of Japanese Pandaka species (Perciformes: Gobiidae) was inferred from partial nucleotide sequences of the mitochondrial 12S and 16S rRNA genes (1083bp). The resultant mtDNA tree showed two major clades (clade I and clade II), which were inconsistent with the present taxonomic classification. One of the major clades was further divided into two geographical groups, distributed on the Japanese Major Islands (clade I-A) and from Amami-oshima Island to Iriomote Island (clade I-B). The mtDNA haplotypes in clade II were found only on Iriomote Island. The mtDNA divergences in clade I indicated that the Japanese Major Island (clade I-A) and Ryukyu (clade I-B) groups have been geographically isolated from each other for millions of years, based on the putative molecular divergence rate. The geographical distributions of mtDNA haplotypes in clade I-A and clade I-B also suggested that Pandaka gobies had not dispersed to distant offshore islands, indicating that their geographical differentiation may be closely associated with the geological history of the Japanese and Ryukyu Archipelagos.This revised version was published online in January 2005 with corrections to the repetition of the 1st authors name.  相似文献   

14.
We investigated hellbender phylogeography through phylogenetic analyses of individuals sampled from 16 locations throughout their range in the eastern United States. Analyses were conducted on concatenated cytochrome-oxidase I (COI), cytochrome-b (Cytb) and NADH dehydrogenase subunit 4 (ND4) mtDNA sequence, totaling 2160 nucleotides. Hellbender haplotypes differed by 0.1 to 5.8% maximum likelihood (ML) corrected sequence divergence. Phylogenetic analyses reveal that hellbenders are separated into 8 reciprocally monophyletic populations or clades differentiated by a minimum of 0.7 to 5.4% sequence divergence, each of which constitutes a separate Management Unit (MU). High among population divergence and reciprocal monophyly suggest that female-mediated gene flow is severely restricted or non-existent among each MU. Hellbenders are currently divided into two subspecies, Cryptobranchus alleganiensis alleganiensis and C. a. bishopi based on morphological characters. The phylogenetic analyses presented here strongly indicate that these subspecies are paraphyletic. Management priorities for the hellbender should be reconsidered in light of these new molecular data. Results from Bayesian rooting indicate the root of the hellbender mtDNA tree lies on the branch leading to hellbender haplotypes from the Current, Eleven Point and New Rivers. The rooted tree suggests that a common ancestor in the southern Ozarks and/or southern Appalachians gave rise to northern hellbender populations, consistent with a Pleistocene refuge hypothesis.  相似文献   

15.
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D-loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplo-type and nucleotide diversity were 0.5261 ± 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise G4ST values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

16.
Polymorphism of the mitochondrial cyt b gene was examined in 35 individuals of common carp and wild common carp (Cyprinus carpio L.). The fish examined represented two natural populations from Khabarovsk krai (Ac and Am), Volga wild common carp, Don wild common carp, and two common carp breeds, Ropsha (strains BB and MM) common carp and Hungarian common carp. The highest level of nucleotide (π) and haplotype (h) diversity was detected in two strains of Ropsha common carp (MM, π = 0.67%, h = 0.7; and BB, π = 0.21%, h = 0.9) and in one population (Am) of Amur wild common carp (π = 0.26%; h = 0.6). The second population of Amur wild common carp (Ac) and Hungarian common carp were characterized by lower variation estimates (π = 0.035%, h = 0.4; and π = 0.09%, h = 0.7, respectively). Genetic homogeneity was demonstrated for the populations of Volga and Don wild common carp (π = 0, h = 0). In the sample of the cyt b sequences examined, three lineages were identified. Lineages I and II united all haplotypes of the Am Amur wild common carp along with two haplotypes of Ropsha common carp, strain MM. The third lineage (III) was formed by the haplotypes of three individuals of Ropsha common carp strain MM, all representatives of Ropsha common carp strain BB, Hungarian common carp, Ac Amur wild common carp, and Don and Volga wild common carps. Statistically significant amino acid differences were observed only for the sequences, corresponding to haplotypes of lineage III, and the sum of sequences of lineages I and II. Effectiveness of different types of markers to differentiate the two subspecies of European and Amur wild common carp (C. c. carpio and C. c. haematopterus) is discussed, as well as the issues of the origin and dispersal of Russian common carp and wild common carp breeds.  相似文献   

17.
Polymorphism was detected at ND1, ND6, D‐loop and cyt b segments of mtDNA in 105 tench (Tinca tinca L.), using the polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) technique and five composite haplotypes were identified. The diversity indices and the results of the population comparisons revealed that the identified markers provide a powerful tool for further studies on this species.  相似文献   

18.
How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site‐associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single‐nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.  相似文献   

19.
Analysis of mitochondrial DNA (mtDNA) haplotypes of Sclerotinia sclerotiorum points to a common origin of some genotypes from agricultural populations, especially when compared with two wild populations that are sharply distinguished from the agricultural sample and from each other. Five agricultural population samples from canola (Alberta, Canada and Norway), cabbage (North Carolina, USA), sunflower (Manitoba, Canada and Queensland, Australia) and two Norwegian populations from a wild plant, Ranunculus ficaria were compared. Haplotypes were determined by Southern hybridization of purified organelle DNA from S. sclerotiorum and Neurospora crassa to total genomic DNA of S. sclerotiorum. Each isolate had one haplotype. Haplotypes of S. sclerotiorum from R. ficaria were different between the two wild populations and also from all haplotypes observed in the agricultural populations. Among the wild isolates, DNA fingerprint, mtDNA haplotype and location in the sampling transect were all associated. Among the agricultural isolates, four haplotypes were observed in at least two agricultural populations and one haplotype was observed in all agricultural populations. In the Canadian canola sample some clones had one mtDNA haplotype, indicating association with DNA fingerprint, some clones had more than one haplotype, and some groups of clones shared haplotypes. Some of the haplotype diversity may be due to the presence of extra-chromosomal elements associated with the mitochondria of S. sclerotiorum.  相似文献   

20.
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of North American ash (Fraxinus spp.) trees first discovered outside of its native range of northeastern Asia in 2002. EAB spread from its initial zone of discovery in the Detroit, Michigan and Windsor, Ontario metropolitan areas, in large part, from inadvertent human-assisted movement of infested ash materials. EAB infestations are now known in 15 US states and two Canadian provinces. The primary goal of this study was to use molecular markers to characterize the population genetic structure of EAB in its native and introduced range. This information may provide valuable insights on the geographic origin, potential host range, invasion potential, and additional biological control agents for ongoing management efforts of this destructive wood-boring beetle. EAB were collected from 17 localities in its native Asian range and from 7 localities in North America, and population structure analyzed using mtDNA gene sequences, AFLP fingerprints, and alleles at 2 microsatellite loci. Analysis of mtDNA cytochrome oxidase subunit I gene (COI; 439 bp) sequences revealed all North American individuals carry a common mtDNA haplotype also found in China and South Korea. Additional mtDNA haplotypes observed in China and South Korea differed from the common haplotype by 1–2 nucleotide substitutions and a single individual from Japan differed by 21 nucleotide changes (4.8%). Analysis using AFLP fingerprints (108 loci) indicated Asian populations were more highly variable, yet had less overall population structure, than the North American populations. North American populations appear most closely related to populations in our sample from the Chinese provinces of Hebei and Tianjin City. Further, population assignment tests assigned 88% of the individual beetles from North America to either Hebei or Tianjin City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号