首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

2.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

3.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

4.
We present data from a long time-series study to describe the factors that control phytoplankton population densities and biomass in the coastal waters of Oman. Surface temperature, salinity, nutrients, dissolved oxygen, chlorophyll a (Chl a), and phytoplankton and zooplankton abundance of sea water were measured as far as possible from February 2004 through February 2006, at two stations along the southern coast of the Gulf of Oman. The highest concentrations of Chl a (3 mg m−3) were recorded during the southwest monsoon (SWM) when upwelling is active along the coast of Oman. However, results from our study reveal that the timing and the amplitude of the seasonal peak of Chl a exhibited interannual variability, which might be attributed to interannual differences in the seasonal cycles of nutrients caused either by coastal upwelling or by cyclonic eddy activity. Monthly variability of SST and concentrations of dissolved nitrate, nitrite, phosphate, and silicate together explained about 90% of the seasonal changes of Chl a in the coastal ecosystem of the Gulf of Oman. Phytoplankton communities of the coastal waters of Oman were dominated by diatoms for most part of the year, but for a short period in summer, dinoflagellates were dominant.  相似文献   

5.
We compared regression tree analyses and multiple linear regression models to explore the relative importance of physical factors, land use, and water quality in predicting phytoplankton production and N2 fixation potentials at 85 locations along riverine to lacustrine gradients within eight southern reservoirs. The regression tree model (r 2 = 0.73) revealed that differences in phytoplankton production were primarily a function of water depth. The highest rates of production (mg C m−3 h−1) occurred at shallow sites (<0.9 m), where rates were also related to total phosphorus (TP) levels. At deeper sites, production rates were higher at sites with relative drainage area (RDA, ratio of drainage area to water surface area) below 45, potentially due to longer hydraulic residence times. In contrast, multiple linear regression selected TP, RDA, dissolved phosphorus, and percent developed land as significant model variables (r 2 = 0.63). The regression tree model (r 2 = 0.67) revealed that N2 fixation potentials (mg N m−3 h−1) were substantially higher at sites with relatively smaller drainage areas (RDA < 45). Within this subgroup, fixation rates were additionally related to TP values (threshold = 41 μg l−1). The multiple linear regression model (r 2 = 0.67) also selected RDA as the primary predictor of N2 fixation. Regression tree models suggest that nutrient controls (phosphorus) were subordinate to physical factors such as depth and RDA. We concluded that regression tree analysis was well suited to revealing nonlinear trends in data (for example, depth), but yielded large uncertainty estimates when applied to linear data (for example, phosphorus).  相似文献   

6.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

7.
We compared phytoplankton and phytobenthos pigment strategies in 17 shallow lakes and ponds from northern Canada and Alaska, sampled during mid to late summer. Benthic chlorophyll a concentrations (8–261 mg m−2) greatly exceeded those of the phytoplankton (0.008–1.4 mg m−2) in all sites. Cyanobacteria dominated the phytobenthos, while green algae and fucoxanthin-groups characterized the plankton. Both communities had higher photoprotection in cold, UV-transparent, high latitude waters. Phytoplankton had higher concentrations of photoprotective carotenoids per unit chlorophyll a than the phytobenthos. The planktonic photoprotective pigments were positively correlated with UV-penetration, and inversely correlated with temperature and coloured dissolved organic matter. A partial redundancy analysis showed that the benthic pigments were related to latitude, area and temperature. The UV-screening compound scytonemin occurred in high concentrations in the phytobenthos and was inversely related to temperature, while benthic carotenoids per unit chlorophyll a showed much lower variability among sites. These differing pigment strategies imply divergent responses to environmental change between the phytobenthos and phytoplankton in high latitude lakes.  相似文献   

8.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

9.
The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6–4.7% salinity) geothermal waters where sinter growth varied between 10 and ~300 kg year−1 m−2, 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9–10), meteoric geothermal waters with temperature = 66–96°C and <1–20 kg year−1m−2 sinter growth, extensive biofilms (a total of 34 OTUs) were observed within the waters and these were dominated by members of the class Aquificae (mostly related to Thermocrinis), Deinococci (Thermus species) as well as Proteobacteria. The observed phylogenetic diversity (i.e., number and composition of detected OTUs) is argued to be related to the physico-chemical regime prevalent in the studied geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.  相似文献   

10.
The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom-specific flow of carbon to bacteria via chromophoric dissolved organic matter (CDOM). Eleven stations monitored were located in the coastal, shelf and open-ocean areas off Ratnagiri (16°59′N, 73°17′E), Goa (15°30′N, 73°48′E) and Bhatkal (13°58′N, 74°33′E) coasts. Visible bloom of “saw-dust” color in the Ratnagiri shelf were microscopically examined and the presence of cyanobacteria Trichodesmium erythraeum and T. thieabautii with cell concentrations as high as 3.05 × 106 trichomes L−1 was recorded. Total bacterial counts (TBC) varied between 94.09 × 108 cells L−1 in the bloom to 1.34 × 108 cells L−1 in the non-bloom area. Chromophoric dissolved organic matter (CDOM) concentrations averaged 2.27 ± 3.02 m−1 (absorption coefficient 325 nm) in the bloom to 0.28 ± 0.07 m−1 in the non-bloom waters respectively. CDOM composition varied from a higher molecular size with lower aromaticity in the bloom to lower molecular size and increased aromaticity in the non-bloom areas respectively. Strong positive relationship of TBC with Chlorophyll a (R 2 = 0.65, p < 0.01) and CDOM concentrations (R 2 = 0.8373, p = 0.01) in the bloom area indicated hydrolysis and/or uptake of CDOM by bacteria. Absorption by mycosporine-like amino acid palythene (λ max = 360 nm) was recorded in the filtrate of bloom. Morphotypes of Trichodesmium-associated bacteria revealed a higher frequency of Gram-positive rods. The role of bacteria in relation to changing CDOM nature and as a factor in affecting oxygen content of the water column is discussed in context of the Arabian Sea.  相似文献   

11.
The decrease of biodiversity related to the phenomena of global climate change is stimulating the scientific community towards a better understanding of the relationships between biodiversity and ecosystem functioning. In ecosystems where marked biodiversity changes occur at seasonal time scales, it is easier to relate them with ecosystem functioning. The objective of this work is to analyse the relationship between phytoplankton diversity and primary production in St. André coastal lagoon – SW Portugal. This lagoon is artificially opened to the sea every year in early spring, exhibiting a shift from a marine dominated to a low salinity ecosystem in winter. Data on salinity, temperature, nutrients, phytoplankton species composition, chlorophyll a (Chl a) concentration and primary production were analysed over a year. Modelling studies based on production-irradiance curves were also conducted. A total of 19 taxa were identified among diatoms, dinoflagellates and euglenophyceans, the less abundant group. Lowest diversities (Shannon–Wiener index) were observed just before the opening to the sea. Results show a negative correlation (p<0.05) between diversity and chlorophyll a (Chl a) concentration (0.2–40.3 mg Chl a m−3). Higher Chl a values corresponded to periods when the community was dominated by the dinoflagellate Prorocentrum minimum (>90% of cell abundance) and production was maximal (up to 234.8 mg C m−3 h−1). Maximal photosynthetic rates (Pmax) (2.0–22.5 mg C mg Chl a−1 h−1) were higher under lower Chl a concentrations. The results of this work suggest that decreases in diversity are associated with increases in biomass and production, whereas increases correspond to opposite trends. It is suggested that these trends, contrary to those observed in terrestrial and in some benthic ecosystems, may be a result of low habitat diversity in the water column and resulting competitive pressure. The occurrence of the highest photosynthetic rates when Chl a is low, under some of the highest diversities, suggests a more efficient use of irradiance under low biomass–high diversity conditions. Results suggest that this increased efficiency is not explained by potential reductions in nutrient limitation and intraspecific competition under lower biomasses and may be a result of niche complementarity.  相似文献   

12.
Production rates, abundance, chlorophyll a (Chl a) concentrations and pigment composition were measured for three size classes (<2 μm, 2–11 μm and >11 μm) of phytoplankton from May to December 2000 in deep, mesotrophic, alpine lake Mondsee in Austria. The study focuses on differences among phytoplankton size fractions characterised by their surface area to volume ratio ([mml−1: mm3l−1]), pigment distribution patterns and photosynthetic rates. Particular attention was paid to autotrophic picophytoplankton (APP, fraction <2 μm) since this size fraction differed significantly from the two larger size fractions. Among the three fractions, APP showed the highest surface area to volume ratios and a high persistence in the pattern of lipophilic pigments between temporarily and spatially successive samples (about 80% similarity of pigment composition between samples over seasons and depths). The epilimnetic abundance of APP varied seasonally with an annual maximum of 180 × 10cells ml−1 in June (at 4–9 m). The minimum (October at 12 m) was more than an order of magnitude lower (4.9 × 103 ml−1). APP peaked during autumn and contributed between 24% and 42% to the total area-integrated Chl a (10–23 mg m−2) and between 16% and 58% to total area-integrated production (5–64 mg m−2  h−1) throughout seasons.  相似文献   

13.
Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g−1, for clear open ocean waters, to 0.020 m2 g−1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg−1, for the turbid shallow estuary waters, to 0.027 m2 mg−1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm−1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial waters.  相似文献   

14.
Phytoplankton productivity in the Canada Basin was measured in the late summer season, from mid-September to mid-October 2009, using a 13C–15N dual tracer technique. To understand potential production changes associated with sea ice melting in the Arctic Ocean, we examined the effects of light enhancement and nitrate enrichment on the carbon productivity of phytoplankton from the chlorophyll a maximum layer. The daily carbon productivity in the Canada Basin in 2009 was very low, with a mean of 4.1 mg C m−2 (SD = 3.6 mg C m−2), compared with those reported in previous studies in the region. Among several explanations, the most plausible reason for the large difference in carbon productivity between this and the previous studies was strong seasonal variation in biomass and photosynthetic rate of the phytoplankton in the study region. Based on our results from light enhancement and nitrate enrichment experiments, we found that carbon productivity of phytoplankton in the chlorophyll a maximum layer could be stimulated by increased light condition rather than nitrate addition. Thus, potentially increasing light availability from current and ongoing decreases in the sea ice cover could increase the carbon production of the phytoplankton in the chlorophyll a maximum layer and produce a well-developed maximum layer at a deeper depth in the Canada Basin.  相似文献   

15.
Temporal changes in α-and β-glucosidase activities, dissolved organic matter content, and bacterial biomass were studied in the superficial sediment layer of a eutrophic lake during the period of anoxia. The mean α-and β-glucosidase activities were 30.7±11.0 and 15.1±6.2 nmol h−1 g−1 of dry sediment, respectively. The specifc β-glucosidase activity seemed to be stimulated by carbohydrates (r=0.80, P<0.05), whereas the specifc α-glucosidase activity was negatively correlated with the dissolved protein concentration (r=−0.72, P<0.10). To test the effect of organic matter on hydrolytic activities under controlled conditions, changes in specific activities were studied in relation to the concentrations of different types of organic matter: phytoplankton, polymers (proteins, cellobiose, and starch) and monomers (glucose and amino acids). The specifc α-and β-glucosidase activities were strongly induced by their natural substrates (starch and cellobiose, respectively) (P<0.05) and were not inhibited by glucose. Proteins inhibited these activities (P<0.05), whereas supplementation with amino acids had no effect on specifc glycolytic activities.  相似文献   

16.
Seasonal changes in the microphytoplankton assemblages were examined in the coastal zone of Bozcaada Island with regard to some major physical and chemical variables. Samples were collected from May 2000 to December 2001 at four stations. A total of 108 dinoflagellates, 102 diatoms, 1 chrysophycean, 3 dictyochophycean, and 1 prasinophycean species were identified and quantified during the study period. Diatoms and dinoflagellates were the most important in terms of species number and abundance. The maximum values of total microphytoplankton were observed at 0.5 m depth (46.2 × 103 cells l−1 at st. 3) in May as this was the month when the diatom Pseudo-nitzschia pungens bloomed. Chlorophyll (chl) a concentration ranged between 0.08 (August) and 0.78 μg l−1 (February). May was another important month in which chlorophyll a increased (0.41–0.47 μg l−1). Species diversity values (Hlog2) ranged from 1.66 bits (June, 20 m) to 4.11 bits (November, 0.5 m). The increase was attributed to a more balanced distribution of abundance among species. The amounts of nitrate + nitrite (0.6−3.7 μg-at N l−1), phosphate (0.2−0.6 μg-at P l−1) and silicate (0.7−2.5 μg-at Si l−1) were recorded on each sampling occasion. Nutrient concentrations and chl a values of the research area were found to be poorer than those of the many other coastal areas in the northeastern Mediterranean. The mean atomic ratio of nitrogen to phosphorus varied from 1.3 (June) to 12.9 (February). This ratio was lower than the Redfield ratio of 16 for ocean phytoplankton, and phytoplankton was potentially limited by nitrogen for most of the months. The result of this study confirms and emphasizes the oligotrophic nature of the eastern Mediterranean.  相似文献   

17.
Cell density and fatty acid (FA) content of Pavlova lutheri and Chaetoceros muelleri were analysed in a continuous algal production system (250-L bags) with reduced diameter. The cell density and FA content and composition in the algal production system were determined in replicate bags over a period of 5 weeks. The results showed that the cell density and essential FAs increased during the experiment for both species. After 5 weeks the mean cell numbers had increased to 6.0 ± 0.3 × 106 cells mL−1 in the P. lutheri bags and 6.0 ± 0.4 × 106 cells mL−1 in the C. muelleri bags. The content of total FAs increased significantly (p < 0.05) in all of the bags during the experiment. At the end of the experiment the mean total FA content were 2.7 ± 0.3 pg cell−1 in the P. lutheri bags and 1.8 ± 0.1 pg cell−1 in the C. muelleri bags. Maximum total FA content registered was 3.0 pg cell−1 in one of the P. lutheri bags. The content of the essential FAs (ARA, EPA, DHA) increased over time in both of the species. At the end of the experiment the content of EPA (0.6 ± 0.1 pg cell−1) and DHA (0.3 ± 0.0 pg cell−1) were highest in the P. lutheri bags, while ARA (0.1 ± 0.0 pg cell−1) was highest in C. muelleri. EPA and DHA constituted 22% and 11%, respectively, of total FA content in P. lutheri, while ARA constituted 6% of total FA content in C. muelleri. The results from this experiment indicate that flagellates such as P. lutheri perform better in narrow bags with improved light conditions, while diatoms like C. muelleri perform better in wider bags under light limitation. Implications for bivalve hatcheries are discussed.  相似文献   

18.
Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.  相似文献   

19.
We examined the importance of picoplankton and virioplankton to reef trophodynamics at Ningaloo Reef, (north-western Australia), in May and November 2008. Picophytoplankton (Prochlorococcus, Synechococcus and picoeukaryotes), bacterioplankton (inclusive of bacteria and Archaea), virioplankton and chlorophyll a (Chl a) were measured at five stations following the consistent wave-driven unidirectional mean flow path of seawater across the reef and into the lagoon. Prochlorococcus, Synechococcus, picoeukaryotes and bacterioplankton were depleted to similar levels (~40% on average) over the fore reef, reef crest and reef flat (=‘active reef’), with negligible uptake occurring over the sandy bottom lagoon. Depletion of virioplankton also occurred but to more variable levels. Highest uptake rates, m, of picoplankton occurred over the reef crest, while uptake coefficients, S (independent of cell concentration), were similarly scaled over the reef zones, indicating no preferential uptake of any one group. Collectively, picophytoplankton, bacterioplankton and virioplankton accounted for the uptake of 29 mmol C m−2 day−1, with Synechococcus contributing the highest proportion of the removed C. Picoplankton and virioplankton accounted for 1–5 mmol N m−2 day−1 of the removed N, with bacterioplankton estimated to be a highly rich source of N. Results indicate the importance of ocean–reef interactions and the dependence of certain reef organisms on picoplanktonic supply for reef-level biogeochemistry processes.  相似文献   

20.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号