首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type-1 diabetes mellitus (DM) leads to numerous disturbances in the male and female reproductive systems. As was shown previously, one of the main causes of the development of complications in DM is a change in the sensitivity of the adenylyl cyclase signaling system (ACSS) to hormones. The aim of this work consisted in detection of disturbances in the hormone-regulated ACSS in reproductive system of rats with experimental type-1 DM (EDM1) caused by administration of streptozotocin. It has been shown that, in the testes of male rats with 5-day-long EDM1 the stimulating effects of human chorionic gonadotropin (HCG) and PACAP-38 on adenylyl cyclase (AC) and the GTP binding of G proteins are decreased considerably. In the uteri of female rats with EDM1 the effects of relaxin, PACAP-38, and biogenic amines are markedly decreased, whereas in ovaries only the effects of HCG are decreased. In all studied tissues of rats with EDM1 the attenuation of somatostatin inhibitory effects was observed, while in the uterus the inhibitory effects of serotonin and adrenalin were also decreased. Thus, in the reproductive tissues of rats with EDM1, the hormone regulatory effects on ACSS are decreased, especially the effect of HCG and the hormones, AC-inhibitors. We believe that the sensitivity of ACSS to hormones in EDM1 underlies the development of pathological changes in the reproductive system of diabetic rats under the conditions of hyperglycemia and insulin deficiency characteristic of type-1 DM.  相似文献   

2.
Sensitivity of the adenylyl cyclase signaling system (ACSS) to polypeptide hormones and biogenic amines is studied in testes and ovaries of rats after the 2- and 4-day fasting as compared with control animals. In tissues of the fasted rats there is shown a decrease in the basal activity of adenylyl cyclase (AC) and of the basal level of the GTP binding of heterotrimeric G proteins. An increase in duration of fasting from 2 to 4 days led to intensification of these changes. In the fasted rats, the AC-stimulating effects of chorionic gonadotropin, PACAP-38, and isoproterenol, realized via G protein of stimulatory type are enhanced, whereas the inhibitory effects of somatostatin on the AC activity realized via G protein of the inhibitory type are reduced. In testes of the fasted rats the stimulating effect of serotonin on AC via both types of G proteins increased, whereas the inhibitory effects of the hormone decreased. Thus, under conditions of fasting, in rat testes and ovaries the ACSS sensitivity to regulatory effects of hormones is changing: their stimulatory effects are increased, while its inhibitory effects, on the contrary, are decreased. We suggest that these changes are one of the key mechanisms of adaptation of organism to deficiency of nutritional resources to be aimed at intensifying the tissues catabolic processes, preferably lypolysis.  相似文献   

3.
In type 1 diabetes mellitus (DM), changes occurring in the adenylyl cyclase signaling system (ACSS) are one of the key causes of complications of the disease. Since type 1 DM has been most often diagnosed in childhood and adolescence, the study of changes in ACSS in the early development of the disease is a genuine problem. For this, we developed a prolonged model of type 1 DM, which was induced by treatment of 6-week-old rats with moderate doses of streptozotocin (1.5M-DM), and studied the functional state of ACSS in the brain, myocardium, and testes of rats with this model of the disease 7 months after its start. The 1.5M-DM model was compared with the model that was induced by streptozotocin treatment of adult, 5-month-old animals (5M-DM). It was shown that, in 1.5M-DM, in the tissues of diabetic rats, the functional activity of ACSS sensitive to biogenic amines and polypeptide hormones was significantly changed. In rats with 1.5M-DM, the adenylate cyclase (AC) inhibitory effects of somatostatin (in all studied tissues), noradrenaline (in the myocardium and the brain), and agonists of type 1 serotonin receptor (in the brain) were weakened to the greatest degree. In the brain, the AC-stimulating effects of relaxin, isoproterenol, and agonists of Gs-protein-coupled serotonin receptors also decreased; in the myocardium, the corresponding effects of GppNHp, relaxin, and β-adrenergic agonists declined; and, in the testes, the AC effects of GppNHp and chorionic gonadotropin declined. When comparing the 1.5M-DM and 5M-DM models, the most pronounced differences between them were found in the effect of DM on hormonal regulation of ACSS in the brain, this being true both for AC-stimulating effects of dopamine and PACAP-38 and for AC-inhibiting effects of bromocriptine and somatostatin. These results indicate significant changes in hormonal regulation of the nervous, cardiovascular, and reproductive systems in rats with early induction of type 1 DM, in some cases more severe changes as compared with late model of 5M-DM. These changes may be the basis for development of diabetic cardiomyopathy, cognitive deficiency, and hypogonadotropic states, which are often detected in children and adolescents with type 1 DM.  相似文献   

4.
The disturbances in hormonal signaling systems, adenylyl cyclase system (ACS) in particular, occur at the early stages of diabetes mellitus (DM) being one of the key causes of its complications. Since the correlation between the severity of DM and severity of disturbances in ACS is established, studying ACS activity can be used for monitoring DM and its complications and evaluating the effectiveness of their treatment. Recently, intranasal insulin (I-I) and the drugs increasing brain serotonin level, thus effectively restoring CNS functions, have begun to be used for the treatment of type 2 DM. However, the mechanisms of their action on peripheral tissues and organs at DM are not understood. The aim of this work was to study an influence of I-I and intranasal serotonin (I-S) on the functional activity of ACS in myocardium, ovary and uterus of rats with a neonatal model of type 2 DM. In the tissues of diabetic rats the changes in the regulation of adenylate cyclase (AC) by guanine nucleotides and hormones acting on enzyme in stimulatory and inhibitory manner were found, and these changes were characterized by receptor and tissue specificity. In diabetic rats I-I restored AC-stimulating effects of isoproterenol in the myocardium, that of guanine nucleotides and gonadotropin in the ovaries and relaxin in the uterus, as well as AC-inhibiting effects of somatostatin in all tissues and norepinephrine in the myocardium. Treatment with I-S led to a partial recovery of AC-inhibiting effect of norepinephrine in the diabetic myocardium, but did not affect the regulation of AC by other hormones. These data indicate that I-I normalizes the functional activity of ACS in the myocardium and in the tissues of reproductive system of female rats with neonatal DM, whereas the effect of I-S on ACS in the studied tissues is less pronounced. These results should be considered for the design and optimization of the strategy of I-I and I-S application for the treatment of DM and its complications.  相似文献   

5.
Sensitivity of the adenylate cyclase signaling system (ACSS) to polypeptide hormones and biogenic amines is studied in testis and ovary of rats after the 2- and 4-day fasting as compared with control animals. In tissues of the fasted rats there is shown a decrease in the basal activity of adenylate cyclase (AC) and of the basal level of the GTP binding of heterotrimeric G protein. An increase of duration of fasting from 2 to 4 days led to intensification of these changes. In the fasted rats, the stimulating effects of chorionic gonadotropin, PACAP-38. and isoproterenol on the AC activity realized via G protein of the stimulatory type are enhanced, whereas the inhibitory effects of somatostatin on the AC activity realized via G protein of the inhibitory type are reduced. In testis of the fasted rats the stimulating effect of serotonin acting on AC via both types of G proteins are increased, while the inhibitory effects of the hormone decrease. Thus, under conditions of fasting, in rat testis and ovary the ACSS sensitivity to regulatory effects of hormones is changing: its stimulatory effects are increased, while its inhibitory effects, on the contrary, are decreased. We suggest these changes is one of the key mechanisms of adaptation of organism to deficiency of nutritional resources to be aimed at intensifying the tissues catabolic processes, preferably, lypolysis.  相似文献   

6.
Under starvation condition, sensitivity of the adenylyl cyclase system to regulatory action of biogenic amines and peptide hormones in rat tissues are changed. In the myocardium and skeletal muscles, after 2 and 4 days of starvation, the regulatory effects of isoproterenol and relaxin acting via G,-proteins on the adenylyl cyclase activity and the G-protein GTP-binding are significantly increased compared with control. At the same time, regulatory effects ofsomatostatin which are realized via Gi-proteins, on adenylyl cyclase system in the myocardium are decreased. Under prolonged starvation consisting of two consecutive 4-days periods, the effects of hormones acting via Gs-proteins on the adenylyl cyclase activity in muscle tissues are decreased to control value levels. The effects of hormones acting via Gi-proteins are largely reduced. In the brain, intensification of adenylyl cyclase stimulating hormonal effects was late and only observed after a 4-day starvation. Unlike muscle tissues, the increase of adenylyl cyclase stimulating effects in the brain is preserved after two-period starvation. The weakening of adenylyl cyclase inhibiting hormonal signals both in the brain and muscles is observed after a 2-day starvation and then the weakening is intensified. Possible role of glucose level and basal adenylyl cyclase activity in determination of the sensitivity of the adenylyl cyclase system to hormones under study is discussed. It is suggested that one of the key causes of physiological changes in animal organism under starvation involves alteration of hormonal signalling systems sensitivity, in particular that of the adenylyl cyclase system, to hormone regulatory action.  相似文献   

7.
Proximal regions of the third intracellular loop (ICL-3) are responsible for the interaction with heterotrimeric G proteins in most of the serpentine type receptors. The peptides corresponding to these regions are able to activate G proteins in the absence of hormone and to alter the transduction of hormonal signal via the respective homologous receptor. However, the molecular mechanisms of action of the peptides, their specificity to receptors and target tissues are currently not well understood. The goal of this work was to study the receptor and tissue specificity of peptides-derivatives of C-terminal regions of the ICL-3 of luteinizing hormone receptor (LHR), type 1 relaxin receptor (RXFP1), somatostatin receptors of types 1 and 2 (Som1R and Som2R), and 5-hydroxytryptamine receptors of subtype 1B and type 6 (5-HT1BR and 5-HT6R) on the functional activity of adenylyl cyclase (AC) and GppNHp-binding of G proteins in the brain, myocardium, and testis of rats. It was shown that the influence of peptides on AC and G proteins is well detected in tissues enriched in homologous receptors. The effects stimulating AC and GppNHp-binding were most pronounced in the testes for LHR peptide, in the brain for peptide 5-HT6R, and in all of the tested tissues (but mainly in the myocardium) for the RXFP1 peptide. The AC-inhibiting effects of peptides Som1R, Som2R and 5-HT1BR, as well as the stimulation of GppNHp binding induced by these peptides, were most pronounced in the brain. In the presence of the peptides, the AC effects of hormones acting via homologous receptors were significantly attenuated, while the AC effects of other hormones changed insignificantly. The findings suggest that biological activity of the peptides depends on their interaction with complementary regions of homologous receptors, which should be taken into account when developing highly selective regulators of hormonal signaling systems on the basis of these peptides.  相似文献   

8.
S49 mouse lymphoma cells contain a beta-adrenergic receptor coupled to Gs that stimulates adenylyl cyclase and a somatostatin receptor coupled to Gi that inhibits adenylyl cyclase. Membranes from these cells were used to compare the inhibitory effects of somatostatin and G protein beta gamma complex to determine under what conditions beta gamma is likely to be a mediator of somatostatin action. Somatostatin was equally effective at inhibiting basal adenylyl cyclase activity in the presence of GTP, forskolin-stimulated activity, and hormone-stimulated activity. G protein beta gamma was more effective at inhibiting basal activity than was somatostatin, and these effects were partially additive. In the presence of forskolin, the two inhibitors were equally effective and not additive. In the presence of isoproterenol, beta gamma was much less effective than somatostatin, and the two inhibitors did not have additive or synergistic effects. At very high concentrations beta gamma did inhibit isoproterenol stimulation of adenylyl cyclase, although its effects were not saturating even at 100 micrograms/ml. Under conditions where beta gamma did inhibit hormone stimulation, beta gamma was a mixed inhibitor of isoproterenol stimulation, proportionally decreasing the maximum effect of the hormone and increasing the half-maximally effective concentration. Somatostatin, on the other hand, was a simple noncompetitive inhibitor of isoproterenol stimulation. These results indicate that beta gamma and somatostatin inhibit adenylyl cyclase by different mechanisms, at least in the presence of hormones that stimulate the enzyme. It is proposed that alpha i is the primary mediator of hormone inhibition of adenylyl cyclase when Gs is activated by a hormone, but that beta gamma may have a role as a mediator of inhibition of basal activity.  相似文献   

9.
The changes in hormone-regulated adenylyl cyclase (AC) signaling system implicated in control of the nervous, cardiovascular and reproductive systems may contribute to complications of diabetes mellitus (DM). We investigated the functional state of AC system in the brain, myocardium, ovary and uterus of rats with neonatal DM and examined the influence of intranasally administered insulin on the sensitivity of this system to biogenic amines and polypeptide hormones. The regulatory effects of somatostatin and 5-HT1BR-agonist 5-nonyloxytryptamine acting via Gi protein-coupled receptors were significantly decreased in DM and partially restored in insulin-treated rats. The effects of hormones, activators of AC, are changed in tissue- and receptorspecific manner, and intranasal insulin restored the effects rather close to the level in control. In insulin-treated non-diabetic rats, AC stimulating effects of isoproterenol and relaxin in the myocardium and of human chorionic gonadotropin in the ovaries were decreased, while the effects of hormones, inhibitors of AC, were increased. These data indicate that with intranasal insulin, Gi protein-mediated signaling pathways continue to gain strength. The obtained data on the influence of hormones on AC system in the brain, myocardium, ovary and uterus allow looking anew into the mechanisms of therapeutic effects of intranasal insulin.  相似文献   

10.
F O Calvo  R J Ryan 《Biochemistry》1985,24(8):1953-1959
Indirect evidence has indicated that the carbohydrate moieties of the glycoprotein hormones are involved in the activation of the receptor-adenylyl cyclase system of reproductive tissues. In the present study, we have isolated the glycopeptides (GP) from human chorionic gonadotropin (hCG), the alpha-subunit of hCG, fetuin, and bovine gamma-globulin (b gamma G). These along with a number of synthetic oligosaccharides were tested for their ability to inhibit adenylyl cyclase (AC). There was less than 0.001% cross-reactivity of the GP from hCG, hCG alpha, fetuin, and b gamma G when tested in a double-antibody hCG radioimmunoassay or rat corpora lutea radioreceptor assay. The GP of fetuin, b gamma G, and the synthetic oligosaccharides did not inhibit AC activity of 2000 g corpora lutea membranes when coincubated with 100 ng of hCG/mL (ED50). However, when the GP of hCG and hCG alpha were included with intact hCG, there was a dose-related inhibition. Inhibition of cyclase activity was enhanced when the hCG GP were desialylated. This occurred without a change in the lag time of hCG activation which was calculated to be 1-1.5 min. Changing the concentration of ATP and Mg2+ did not affect the inhibitory effects of the hCG alpha GP on hCG-stimulated AC activity. Inhibition by hCG GP followed uncompetitive kinetics. The inhibition by the GP of hCG seems to be restricted to the LH/hCG-stimulatable AC system because the same dosage of hCG GP which inhibited the rat luteal AC system did not have any effect on the rat hepatocyte AC system when coincubated with glucagon or on NaF-stimulated activity in luteal membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The peptide hormone relaxin in dose-dependent manner stimulates adenylyl cyclase activity in the rat tissues (brain striatum, heart and skeletal muscles) and the muscle tissues of invertebrates--bivalve mollusk Anodonta cygnea and earthworm Lumbricus terrestris. Adenylyl cyclase stimulating effect of the hormone is most expressed in striatum and heart muscles of rats. For identification of the type ofrelaxin receptors, participating in the realization of this effect of the hormone, the peptides 619-629, 619-629-Lys(Palm) and 615-629 derived from the primary structure of C-terminal region of the third intracellular loop of the relaxin receptor of type 1 (LGR7), were synthesized by us for the first time. It is shown that peptide: 619-629-Lys(Palm) and 615-629 in competitive manner inhibit the stimulation of the adenylyl cyclase by relaxin in brain striatum and heart muscle of rats. At the same time, these peptides do not change stimulating effect of the hormone in the skeletal muscles of rat and in the muscles of invertebrates. Thus, the peptide action on adenylyl cyclase effect of relaxin is tissue- and species-specific. These data, on the one hand, demonstrate participation of receptor LGR7 in realization of adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle of rats and, on the other, give evidence for existence of another adenylyl cyclase signaling mechanisms of relaxin action in the skeletal muscles and the muscle of invertebrates, which do not involve LGR7 receptor. The adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle was decreased in the presence of C-terminal peptides 385-394 of alpha(s)-subunit of mammalian G protein and was blocked by treatment of the membranes with cholera toxin. On the basis of data obtained the following conclusions were made: (i) in striatum and heart muscle the relaxin stimulates adenylyl cyclase through LGR7 receptors functionally coupled with Gs protein, and (ii) the coupling between hormoneactivated relaxin receptor LGR7 and Gs protein is realized via the interaction of C-terminal part of receptor third intracellular loop and C-terminal segment of Gs protein alpha-subunit.  相似文献   

12.
Functional disturbance in the novel adenylyl cyclase signaling mechanism (ACSM) of insulin and relaxin action in rat streptozotocin (STZ) type I diabetes was studied on the basis of the authors’ conception of molecular defects in hormonal signaling systems as the main causes of endocrine diseases. Studying the functional state of molecular components of the ACSM and the mechanism as a whole, the following changes were found in the skeletal muscles of diabetic rats compared with control animals: 1) increase of insulin receptor binding due to an increase in the number of insulin binding sites with high and low affinity; 2) increase of the basal adenylyl cyclase (AC) activity and the reduction of AC-activating effect of non-hormonal agents (guanine nucleotides, sodium fluoride, forskolin); 3) reduction of ACSM response to stimulatory action of insulin and relaxin; 4) decrease of the insulin-activating effect on the key enzymes of carbohydrate metabolism, glycogen synthase and glucose-6-phosphate dehydrogenase. Hence, the functional activity of GTP-binding protein of stimulatory type, AC and their functional coupling are decreased during experimental type 1 diabetes that leads to the impairment of the transduction of insulin and relaxin signals via ACSM.  相似文献   

13.
The adenylyl cyclase signaling mechanism (ACSM) of relaxin H2 action was discovered and deciphered in mammalian muscles. A study of signaling blocks involved in ACSM of relaxin in comparison with that of insulin previously detected showed a close similarity throughout the post-receptor signaling chain of both hormones. The inhibitory action of tyrosine kinase blockers on the hormone AC activating effect indicates that the relaxin receptor involved in ACSM is likely to be of the tyrosine kinase type. However, a recent discovery of a relaxin receptor with serpentine architecture leaves open the question concerning the existence of receptor of the tyrosine kinase type. The structural-functional organization of the ACSM due to the action of relaxin-shown here for the first time-can be presented as the following signaling sequence: relaxin receptor ==>G(i) protein (betagamma-dimer) ==>phosphatidylinositol 3-kinase ==>protein kinase Czeta ==>G(s) protein ==>adenylyl cyclase. According to our hypothesis, the regulatory action of the insulin superfamily peptides on cell processes (proliferation, apoptosis, and metabolism) is mediated via ACSM.  相似文献   

14.
Presently, our work, as well as that of other authors, has produced convincing evidence in favor of the idea that disturbances in hormonal signaling systems are one of the main causes of the development of pathological alterations and complications in diabetes. However, the molecular mechanisms underlying these disturbances remain practically unstudied, particularly in insulin-independent type 2 diabetes. Using a neonatal streptozotocin model of type 2 diabetes, whose duration was either 80 or 180 days, we studied changes in the functional activity of components of the hormone-regulated adenylyl cyclase (AC) signaling system in the myocardium and brain striatum of diabetic rats as compared with control animals. In diabetes, the Gi-realized process of transduction of the hormonal signal inhibiting AC activity has been shown to be markedly impaired. This is manifested as a decrease of the inhibitory effect of hormones on AC activity and an attenuation of their stimulation of the G-protein’s GTP-binding activity. In the case of noradrenaline (myocardium), the inhibitory pathway of the AC system regulation is completely suppressed, while the stimulatory pathway is preserved. An increase in the duration of diabetes development from 80 to 180 days leads to some decrease in the transduction of hormonal signals realized via Gi-proteins. The stimulatory effects of biogenic amines and relaxin on AC activity and GTP binding in the myocardium and brain of diabetic rats change relatively little, both in the 80-and in the 180-day diabetes. Thus, in the experimental type 2 diabetes, disturbances in Gi-protein coupled signal cascades are primarily observed, through which hormones realize their inhibition of AC activity.  相似文献   

15.
Completion of maturation of spermatozoa (capacitation) occurs in the female genital tract. As a result, spermatozoa acquire the high motility and the capability for acrosomal reaction, which determines their fertility. There are evidences that adenylyl cyclase and guanylyl cyclase signaling systems detected in human and mammalian spermatozoa are involved in these processes. The goal of the present study was characterization of these systems in human ejaculate spermatozoa (ES) and in human fertile spermatozoa (FS) isolated by a density gradient centrifugation. In FS homogenate the basal activity of the adenylyl cyclase (AC) was significantly higher as compared with ES (47 ± 5 vs. 28 ± 3 pmol cAMP/min per mg of protein). At the same time, the AC stimulatory effects of non-hormonal activators of soluble and membrane-bound forms of AC (NaHCO3, Mn2+, forskolin, and non-hydrolyzable GTP analogue—GppNHp) in FS were lower as compared with ES. Isoproterenol, serotonin, PACAP-38, and, to the lesser extent, noradrenalin and adenosine stimulated the AC activity in ES. Among hormones inhibiting AC, only adenosine decreased the enzyme activity. At the same time, in FS the inhibitory AC effects of adenosine, noradrenalin, and serotonin were markedly expressed, and the stimulatory effects of these hormones were decreased or absent. The basal activity of guanylyl cyclase (GC) in ES and FS homogenates was 27 ± 3 and 21 ± 2 pmol cGMP for 1 min per 1 mg protein, respectively, and was significantly increased in the presence of 10 mM Mn2+. The stimulatory GC effects of natriuretic peptides—ANP and CNP, activators of receptor forms of GC, was significantly higher in ES than in FS, and the effect of ANP was more pronounced as compared with CNP. The data indicate the multiplicity of cAMP- and cGMP-dependent signaling cascades regulating fertility of human spermatozoa. We found that the sensitivity of AC and GC to hormones in the common pool of ES and in the fraction of highly motile FS isolated by centrifugation was essentially different, which is to be considered when using FS for accessory reproductive technology.  相似文献   

16.
A new signaling mechanism common to mammalian insulin, insulin-like growth factor I, relaxin and mollusc insulin-like peptide, and involving receptor-tyrosine kinase==>G(i) protein (betagamma)==>phosphatidylinositol-3-kinase==>protein kinase Czeta==>adenylyl cyclase==>protein kinase A was discovered in the muscles and some other tissues of vertebrates and invertebrates. The authors' data were used to reconsider the problem of participation of the adenylyl cyclase-cAMP system in the regulatory effects of insulin superfamily peptides. A hypothesis has been put forward according to which the adenylyl cyclase signaling mechanism producing cAMP has a triple co-ordinating role in the regulatory action of insulin superfamily peptides on the main cell processes, inducing the mitogenic and antiapoptotic effects and inhibitory influence on some metabolic effects of the peptides. It is suggested that cAMP is a key regulator responsible for choosing the transduction pathway by concerted launching of one (proliferative) program and switching off (suppression) of two others, which lead to cell death and to the predomination of anabolic processes in a cell. The original data obtained give grounds to conclude that the adenylyl cyclase signaling system is a mechanism of signal transduction not only of hormones with serpentine receptors, but also of those with receptors of the tyrosine kinase type (insulin superfamily peptides and some growth factors).  相似文献   

17.
Luteinizing hormone (LH) and its homologue, human chorionic gonadotropin (hCG), are very important regulators of the reproductive system. These hormones stimulate various types of G proteins—primarily, Gs and Gq proteins—by binding to the specific LH-hCG receptor, which leads to the activation of adenylate cyclase (AC) and phospholipase C, respectively. It has been suggested that many side effects of LH and hCG are associated with low selectivity of their effect on G proteins. Low-molecular agonists of LH-hCG receptor developed on the basis of thienopyrimidine derivatives do not cause these side effects, and differences in the interaction with G proteins may be ones of the cause for this. To test this, a comparative study of the effect of hCG and synthesized by us thienopyrimidine derivative, 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP03) on the AC activity and GTP binding of G proteins in plasma membranes isolated from the rat ovaries and testes was performed. Cholera toxin (CT) and pertussis toxin (PT) were used to selectively switch off the signal transduction via Gs and Gi/o proteins, the peptide corresponding to the C-terminal segment 349–359 of the Gαq subunit was used to suppress Gq-dependent cascades. It was shown that treatment of ovarian and testicular membranes with CT resulted in suppression of TP03 and hCG stimulatory effects on the AC activity, but in different ways influenced the GTP binding stimulation: it completely blocked the effect of 10–6 M TP03 and reduced by 45–46% the effect of hCG (10–8 M). Preincubation of membranes with the peptide 349–359 reduced the hCG stimulatory effect on GTP binding by 34 (ovaries) and 45% (testes), but did not affect the corresponding effect of 10–6 M TP03. Preincubation with the peptide 349–359 also reduced the GTP stimulatory effect of 10–4 M TP03, but to a small extent. The obtained data indicate that, in contrast to hCG, the targets of which in the ovaries and testes are Gs and Gq proteins, the action of TP03 is realized mainly via Gs proteins. Only at a concentration that exceeds EC50 by two orders TP03 is capable to relatively weakly activate Gq proteins. The PT treatment of the membranes did not affect the effects of TP03 and hCG, which indicates the lack of their effective interaction with Gi/o proteins. Thus, the selectivity of activation of Gs-dependent cascades responsible for the synthesis and production of steroid hormones is a significant advantage of low-molecular agonists of LH-hCG receptor over gonadotropins.  相似文献   

18.
Participation of adenylyl cyclase signaling mechanisms of relaxin and insulin action in their regulating influence on the process of relaxation of the rat uterine and tracheal smooth muscles and human myometrium was shown. The study was based on the discovery of novel adenylyl cyclase signaling mechanisms of relaxin and insulin action in the muscle of vertebrates which involve: receptor --> Gi protein (betagamma dimer) --> phosphatidylinositol-3-kinase --> protein kinase Csigma (zeta) --> Gs protein --> adenylyl cyclase --> cAMP. In the rat uterus, trachea and human myometrium, relaxin, insulin and isoproterenol induced relaxation of KCl-contraction. The order of efficiency of the agents based upon their ability to induce the inhibiting effect on the KCl-contraction was as follows: relaxin = insulin > isoproterenol. The hormones induce activating effect on adenylyl cyclase leading to production of cAMP in the rat uterine and tracheal smooth muscles and human myometrium. It is shown that cAMP reproduces relaxing effect of the hormones under study. Thus, the involvement of novel adenylyl cyclase signaling mechanisms of relaxin and insulin action in realization of their relaxation effect on rat uterus, trachea and human myometrium was revealed for the first time.  相似文献   

19.
In the smooth muscles of mollusc Anodonta cygnea the regulatory action of hormones on adenylyl cyclase signaling system (ACSS) are realized through the receptors of serpentine type (biogenic amines, isoproterenol, glucagon) and receptor tyrosine kinase (insulin) type. Intracellular mechanisms of their interaction are interconnected. Application of hormones, their antagonists and pertussis toxin in combination with insulin and biogenic amines or glucagon on adenylyl cyclase (AC) activity allows revealing the possible sites of cross-linking in the mechanisms of their action. Combined influence of insulin and serotonin or glucagon leads to decreased stimulation of adenylyl cyclase (AC) by these hormones, whereas combined application of insulin and isoproterenol suppresses AC-stimulating effect of insulin, but AC-inhibiting effect of isoproterenol is maintained in the presence and absence of non-hydrolysable analog of GTP—guanylyl imido diphosphate (GIDP). The specific blockage of AC-stimulating effect of serotonin by cyproheptadine—antagonist of serotonin receptors, did not change AC stimulation by insulin. Beta-adrenoblockers (propranolol and alprenolol) prevent inhibition of AC activity by isoproterenol, but did not change AC stimulation by insulin. Pertussis toxin blocked AC-inhibiting effect of isoproterenol and weakened AC-stimulating action of insulin. Thus, in the muscles of Anodonta cygnea negative interaction between ACS have been revealed, which are realized under combined influence of insulin and serotonin or glucagon, most probably, at the level of receptor of serpentine type (serotonin, glucagon), whereas under action of insulin and isoproterenol at the level of Gi protein and AC interaction.  相似文献   

20.
To analyse molecular mechanisms of regulatory action of different hormones on the activity of the adenylyl cyclase signaling system (ACS) of the ciliate Dileptus anser, we studied the influence on this process of six synthetic polycationic peptides and peptides, corresponding to C-terminal regions of mammalian G-protein 385-394 alphas- and 346-355 alphai2-subunits. As we reported earlier, these peptides block hormonal signal transduction in tissues of the higher eukaryotes. Now it has been found that both polycationic peptides, containing hydrophobic C to-radicals, and branched peptides decrease regulatory effects of peptide hormones (insulin, relaxin) and biogenic amines (serotonin, adrenaline) on adenylyl cyclase (AC) activity and GTP-binding. In regard to the following peptides Cys-epsilonAhx-Trp-Lys-Lys(C10)-Lys2-Lys(C10)-Lys3-Lys(C10)-Tyr-Lys-Lys(C10)-Lys-Lys-amide and [(Gly-Arg-Gly-Asp-Ser-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro- Pro-Gly)2-Lys-EAhx-Cys]2 (epsilonAhx - E-aminocaproyl, C10 - caprinoyl group) their dose-dependent inhibitory action is shown. In cell culture of D. anser with a lower basal AC activity, both hydrophobic and branched peptides stimulated AC and GTP-binding without hormones. The data give evidence that these peptides can activate ACS of ciliates in a receptor-independent manner. No influence of peptides 385-394 alphas and 346-355 alphai2 on hormonal signal transduction in D. anser was observed, due, presumably, to some structural differences of G-proteins of the lower and higher eukaryotes. A conclusion was made about an important role of polycationic regions for functional coupling of hormone-activated receptor and G-proteins in the ciliate D. anser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号