首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Essentially the same methanolysis products were obtained after methylation of the slime and capsular polysaccharides from Escherichia coli K12 (S53 and S53C sub-strains) and the slime polysaccharides from E. coli K12 (S61), Aerobacter cloacae N.C.T.C. 5290 and Salmonella typhimurium SL1543. These were the methyl glycosides of 2-O-methyl-l-fucose, 2,3-di-O-methyl-l-fucose, 2,3-di-O-methyl-d-glucuronic acid methyl ester, 2,4,6-tri-O-methyl-d-glucose, 2,4,6-tri-O-methyl-d-galactose and the pyruvic acid ketal, 4,6-O-(1'-methoxycarbonylethylidene)-2,3-O-methyl-d-galactose. All were identified as crystalline derivatives from an E. coli polysaccharide. The structure of the ketal was proved by proton-magnetic-resonance and mass spectrometry, and by cleavage to pyruvic acid and 2,3-di-O-methyl-d-galactose. All these polysaccharides are therefore regarded as variants on the same fundamental structure for which the name colanic acid is adopted. Although containing the same sugar residues, quite different methanolysis products were obtained after methylation of the extracellular polysaccharide from Klebsiella aerogenes (1.2 strain). The hydroxypropyl ester of E. coli polysaccharide, when treated with base under anhydrous conditions, underwent beta-elimination at the uronate residues with release of a 4,6-O-(1'-alkoxycarbonylethylidene)-d-galactose. Together with the identification of 3-O-(d-glucopyranosyluronic acid)-d-galactose as a partial hydrolysis product, this establishes the nature of most, if not all, of the side chains as O-[4,6-O-(1'-carboxyethylidene)-d-galactopyranosyl]-(1-->4)-O-(d-glucopyranosyluronic acid)-(1-->3)-d-galactopyranosyl...  相似文献   

2.
The acidic extracellular polysaccharide of Ech6 was depolymerized by fuming HCl. The pyruvated sugars were isolated and characterized by methods that included a combination of low-pressure gel-filtration and high-pH anion-exchange chromatographies, methylation linkage analyses, mass (GC-MS and MALDI-TOF MS) and 1H NMR (1D and 2D) spectroscopies. The following pyruvated sugars were obtained: 4,6-O-(1-carboxyethylidene)-D-Galp; 4,6-O-(1-carboxyethylidene)- alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-D-Galp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-alpha-D-GlcAp- (1-->3)-alpha-D-Galp-(1-->3)-L-Fucp; 4,6-O-(1-carboxyethylidene)-alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3) -alpha-D-Galp-(1-->3)-L-[beta-D-Glcp-(1-->4)]-Fucp. These oligosaccharides present potential haptenes for the development of specific antibodies and confirm the partial structure proposed previously for the extracellular polysaccharide from Erwinia chrysanthemi Ech6 [Yang, B. Y.; Gray, J. S. S.; Montgomery, R. Int. J. Biol. Macromol., 1994, 16, 306-312].  相似文献   

3.
The applicability of the reductive-cleavage method to the analysis of polysaccharides bearing pyruvic acid acetals has been demonstrated. Direct reductive cleavage of fully methylated gum xanthan yielded the expected products, including 1,5-anhydro-4,6-O-[(S)-1-methoxycarbonylethylidene]-2,3-di-O-methy l-D- mannitol. The latter product was not observed when reductive cleavage was performed subsequent to reduction of ester groups in the fully methylated polysaccharide and mild hydrolysis to remove pyruvic acid acetal substituents. Instead, the latter experiment yielded 1,5-anhydro-2,3-di-O-methyl-D-mannitol, establishing the presence in the polysaccharide of terminal (nonreducing) D-mannopyranosyl groups bearing 4,6-O-(1-carboxyethylidene) substituents. The products of reductive cleavage were characterized, where appropriate, by comparison of the gas chromatographic retention times and chemical ionization- and electron ionization-mass spectra of their acetates to those of authentic standards. Alternatively, the products of reductive cleavage could be characterized without resort to comparison with authentic standards by analysis of the 1H-n.m.r. spectra of their benzoates, which were obtained in pure form by high-performance liquid chromatography. By either method of product characterization, this two-step procedure of analysis reveals the presence of pyruvic-acetal residues in polysaccharides and establishes both the identity of the sugar residue to which they are attached and their positions of attachment.  相似文献   

4.
The 4,6-O-(1-methoxycarbonylethylidene), -(hydroxyisopropylidene), and -(methoxyisopropylidene) acetals of methyl 2,3-di-O-methyl-alpha-D-glucopyranoside were subjected to reductive cleavage in the presence of triethylsilane and trimethylsilyl methanesulfonate-boron trifluoride etherate (Me3SiOMs-BF3.Et2O), BF3.Et2O, or trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) and the mole fractions of products were determined as a function of reaction time. The 4,6-(1-methoxycarbonylethylidene) acetal was quite stable to reductive-cleavage conditions but isomerization of the initial R,S mixture of diastereomers to the more-stable S diastereoisomer was noted. In addition, a slow, regiospecific, reductive ring-opening of the acetal was observed to give 6-O-[1-(methoxycarbonyl)ethyl] derivatives. The 4,6-(hydroxyisopropylidene) acetal was very unstable under reductive-cleavage conditions. Both Me3SiOMs-BF3.Et2O and Me3SiOSO2CF3 catalyzed complete removal of the group, via the intermediate 6-[1-(hydroxymethyl)ethyl] ether, but BF3.Et2O gave a mixture of products. The 4,6-(methoxyisopropylidene) acetal was also very labile under reductive-cleavage conditions; Me3SiOMs-BF3.Et2O catalyzed complete removal of the acetal, via the intermediate 6-[1-(methoxymethyl)ethyl]ether, but the intermediate ether was quite stable in the presence of either BF3.Et2O or Me3SiOSO2CF3. It is concluded from these studies that polysaccharides bearing 4,6-O-(1-carboxyethylidene) substituents can be analyzed directly by sequential permethylation and reductive cleavage. It is proposed that the identity of the substituted monomer and the positions of substitution of the acetal can be determined by sequential permethylation, ester reduction, and reductive cleavage.  相似文献   

5.
The structure of a neutral polysaccharide isolated by degradation with dilute acetic acid of the lipopolysaccharide (LPS) of P. mirabilis O24 has been determined recently [E. Literacka et al., FEBS Lett., 456 (1999) 227-231]. Further studies of this LPS using alkaline degradation and hydrolysis at pH 4.5 showed that the polysaccharide chain includes an acetal-linked pyruvic acid residue, which is removed completely during delipidation with acetic acid. A revision using 1H and 13C NMR spectroscopy and methylation analysis resulted in determination of the following full structure of the repeating unit of the O-specific polysaccharide: carbohydrate sequence [see text] where D-Gal3,4(S-Pyr) is 3,4-O-[(S)-1-carboxyethylidene]-D-galactose.  相似文献   

6.
The mass spectra of permethylated methyl 4,6-O-(1-carbomethoxyethylidene)-D-hexopyranoside and 1,5-anhydro-D-hexitol of glucose, galactose, and mannose and permethylated methyl 5,6-O-(1-carbomethoxyethylidene)-D-galactofuranoside and 1,4-anhydro-D-galactitol have been determined. The stability of each compound toward methanolysis and reductive cleavage is discussed. These techniques permit the identification of the acetalic linkages of pyruvic acid present in polysaccharides.  相似文献   

7.
Serum amyloid P component (SAP), a normal plasma glycoprotein, has recently been shown to have Ca2+-dependent binding specificity for methyl 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranoside (MO beta DG) [Hind, Collins, Renn, Cook, Caspi, Baltz & Pepys (1984) J. Exp. Med. 159, 1058-1069]. SAP was found to bind in vitro to Klebsiella rhinoscleromatis, the cell wall of which is known to contain this particular cyclic pyruvate acetal of galactose. SAP also bound in similar amounts (approx. 6000 molecules per organism) to group A Streptococcus pyogenes, but very much less was taken up on Xanthomonas campestris, which contains the 4,6-cyclic pyruvate acetal of mannose. No SAP bound to Escherichia coli, which contains the 4,6-cyclic pyruvate acetal of glucose, or to Streptococcus pneumoniae type 4, which contains the 2,3-cyclic pyruvate acetal of alpha- rather than beta-galactopyranoside, or to other organisms (Streptococcus agalactiae, Staphylococcus aureus and Staphylococcus epidermidis), the carbohydrate structures of which are less well characterized. Binding of SAP to those organisms which it did recognize was completely inhibited or reversed by millimolar concentrations of free MO beta DG. SAP, a human plasma protein, thus behaves as a lectin and may be a useful probe for its particular specific ligand in the cell walls of bacteria and other organisms.  相似文献   

8.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

9.
Four of six human monoclonal IgM proteins were found to react best with Klebsiella polysaccharides containing 3,4py beta DGal (pyruvic acetalated D-galactopyranose), one with Klebsiella polysaccharides with 4,6pyDGlc; the sixth is uncharacterized. The combining sites of two of these (IgMWEA and IgMNAE) were essentially indistinguishable by quantitative precipitin studies at varying pH and by quantitative precipitin inhibition assays, but the other two differed in specificity of their combining sites from these and from each other. These differences were detected by precipitin inhibition assays with 3,4py beta DGal-containing oligosaccharide alditols, the R and S isomers of methyl 4,6py alpha DGal, the R isomer of methyl 4,6py beta DGal, or the R and S isomers of methyl 4,6py alpha DGlc, and -beta DGlc. In all of these except the S isomer of methyl 4,6pyDGal and R isomer of methyl 4,6pyDGlc, the carboxyl group is axial to the plane of the acetal ring. Their specificity appears to be determined by the nonreducing ends of chains and is considered to be cavity-type.  相似文献   

10.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

11.
Treatment of methyl 4,6-O-benzylidene-2-O-p-tolylsulfonyl-α-D-ribo-hexopyranosid-3-ulose (1) with triethylamine-methanol at reflux temperature yields methyl 2,3-anhydro-4,6-O-benzylidene-3-methoxy-α-D-allopyranoside (2), a derivative (3) of 3-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one, and methyl 4,6-O-benzylidene-α-D-ribo-hexopyranosid-3-ulose dimethyl acetal (4). The reaction of methyl 4,6-O benzylidene-3-O-p-tolylsulfonyl-α-D-arabino-hexopyranosid-2-ulose (12) with triethylamine-methanol afforded methyl 4,6-O-benzylidene-α-D-ribo-hexopyranosid-2-ulose dimethyl acetal (19) and methyl 2,3-anhydro-4,6-O-benzylidene-2-methoxy-α-D-allopyranoside (20); from the reaction of the β-D anomer (13) of 12, methyl 4,6-O-benzylidene-β-D-ribo-hexopyranosid-2-ulose dimethyl acetal (21) was isolated. Syntheses of the α-keto toluene-p-sulfonates 12 and 13 are described. Mechanisms for the formation of the compounds isolated from the reactions with triethylamine-methanol are proposed.  相似文献   

12.
The cis axial/equatorial OH groups of methyl alpha-L- and ethyl 1-thio-alpha-L-rhamnopyranoside, 1,6-anhydro-beta-D-mannopyranose, and 1,6-anhydro-beta-D-galactopyranose were reacted with 2-naphthaldehyde dimethyl acetal to diastereomeric dioxolane-type 2,3-O-(2-naphthyl)methylene or 3,4-O-(2-naphthyl)methylene acetals. The glycosides yielded the exo- and endo-isomers in nearly 1:1 ratio, 1,6-anhydro-beta-D-mannopyranose gave predominantly the endo-, and 1,6-anhydro-beta-D-galactopyranose exclusively endo-isomer. The acetals and some of their fully protected derivatives bearing benzyl or tert-butyldimethylsilyl groups were hydrogenolised with AlH(3) (3LiAlH(4)-AlCl(3)) or with Me(3)N.BH(3)-AlCl(3) reagents. The endo-isomers were cleaved by both reagents to give axial NAP ethers, the exo-isomers of pyranosides furnished equatorial NAP ethers. However, the exo-isomers of pyranoses gave irregular axial ethers with a > 30-fold enhancement of the reaction rates with respect to the endo-isomer.  相似文献   

13.
The structure of d-threo-2,5-hexodiulosonic acid (1) and various derivatives in solution was determined by 13C-n.m.r. spectroscopy to be a hydrated, pyranose form. The structures of the methyl ester of 1 and of its 5-(dimethyl acetal) were confirmed by chemical means and by X-ray structure analysis.  相似文献   

14.
Acetalation of sucrose with 2,2-dimethoxypropane in 1,4-dioxane in the presence of p-toluenesulfonic acid, followed by acetylation, afforded methyl 4,6-di-O-acetyl-1,3-O-isopropylidene-alpha-D-fructofuranoside and 4-O-acetyl-2,3:5,6-di-O-isopropylidene-D-glucose dimethyl acetal as major products, while tosylation of the intermediate acetals provided methyl 6-O-tosyl-1,3-O-isopropylidene-alpha-D-fructofuranose.  相似文献   

15.
The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.  相似文献   

16.
The synthesis of methyl 5-O-benzoyl-2,3-oxazole-D-ribofuranoside, a tetrahydrofuro [3,4-d]oxazole is described. The key step involves the reaction of methyl 3-amino-3-deoxy-5-O-benzoyl-D-ribofuranoside with N,N-dimethylformamide dimethyl acetal with cyclisation to the 2,3-oxazole via a prototropic rearrangement-elimination reaction.  相似文献   

17.
N-Acetyl-1-thiomuramoyl-L-alanyl-D-isoglutamine and some lipophilic analogs were synthesized from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]- alpha-D-glucopyranoside (1). O-Debenzoylation of 2, derived from 1 by oxidation, gave 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]-D-glucopyranose (3). Condensation of the alkoxy-tris(dimethylamino)phosphonium chloride (4), formed from 3 by the action of carbon tetrachloride and tris(dimethylamino)phosphine, with potassium thioacetate afforded 2-acetamido-1-S-acetyl-2-deoxy-4,6-O-isopropylidene-3-O-[ D-1-(methoxycarbonyl)ethyl]-1-thio-beta-D-glucopyranose (8). Coupling of the acid 9, obtained from 8 by hydrolysis and subsequent S-acetylation, with the methyl ester of L-alanyl-D-isoglutamine gave N-[2-O-(2-acetamido-1-S-acetyl-2,3-dideoxy-4,6-O- isopropylidene-1-thio-beta-D-glucopyranose-3-yl)-D-lactoyl]-L-alan yl-D- isoglutamine methyl ester (10), which was converted, via O-deisopropylidenation, S-deacetylation, and de-esterification, into the N-acetyl-1-thiomuramoyl dipeptide. Condensation of 11 (derived from 10 by S-deacetylation) and of 12 (obtained from 10 by S-deacetylation and de-esterification) with various acyl chlorides yielded the corresponding 1-S-acyl-N-acetylmuramoyl-L-alanyl-D-isoglutamine derivatives, which were converted into the desired, lipophilic 1-thiomuramoyl dipeptides by cleavage of the isopropylidene group. Condensation of 11 with the alkyl bromides yielded the 1-S-alkyl derivatives, which were also converted, via O-deisopropylidenation and de-esterification, into the corresponding 1-S-alkylmuramoyl dipeptides. The biological activities were examined in guinea-pigs and mice.  相似文献   

18.
A new acidic sugar, 3-O-[(R)-1-carboxyethyl]-L-rhamnose (1), has been identified as a constituent of the O-antigenic lipopolysaccharide of Sh. dysenteriae type 5. The structure of 1 has been established by physico-chemical methods and by synthesis. Alkylation of methyl 2,5-di-O-benzyl-alpha-L-rhamnofuranoside (6) with (S)- or (R)-2-chloropropionic acids, followed by removal of the protecting groups, afforded 3-O-[(R)-1-carboxyethyl]-L-rhamnose (9) and 3-O-[(S)-1-carboxyethyl]-L-rhamnose (10), respectively. The properties of 1 coincide with those of 9.  相似文献   

19.
A glycosphingolipid component of human brain, having long-chain cyclic acetals, has been isolated and characterized. This compound incorporates a novel type of natural glycan modification, in which a long-chain aliphatic aldehyde is conjugated through a cyclic acetal (plasmal) linkage to the galactosyl moiety of cerebroside. In addition to components normally observed by gas chromatography-mass spectrometry (GC-MS) following methanolysis of cerebroside (fatty acid methyl esters, methyl alpha- and beta-galactosides, sphingosine), this compound produced 16:0, 18:0, and 18:1 fatty aldehydes, unequivocally identified as their enol methyl ether derivatives. Results of positive ion fast atom bombardment mass spectrometry (FAB-MS) of the native compound, and GC-MS of partially methylated hexitol acetates derived from the permethylated derivative, were consistent with structures of galactocerebroside having 3,4- and 4,6-linked cyclic plasmal substituents, as shown. [formula: see text]  相似文献   

20.
Butyrivibrio fibrisolvens strain 49 excretes a polysaccharide that contains D-glucose, D-galactose, 4-O-(1-carboxyethyl)-D-galactose, and an acidic component of previously unknown structure. We report here the identity of the unknown as 4-O-(1-carboxyethyl)-L-rhamnose. The structure of this previously unknown compound was deduced from (1) comprehensive electron-impact and chemical-ionization mass-spectroscopic studies of differentially labelled derivatives prepared from the unknown, (2) 13C-n.m.r. and 1H-n.m.r. studies of purified neutral sugars derived from the unknown and (3) chemical degradation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号