共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N. Bonnefoy M. Kermorgant G. Dujardin P. Brivet-Chevillotte 《Molecular & general genetics : MGG》1996,251(2):204-210
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc
1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1
– mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc
1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes. 相似文献
3.
Weidong Jiang Moon-Young Lim Hye-Joo Yoon Jeremy Thorner G. Steven Martin John Carbon 《Molecular & general genetics : MGG》1995,246(3):360-366
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p. 相似文献
4.
SNAREs are membrane-associated proteins that play a central role in vesicle targeting and intra-cellular membrane fusion reactions in eukaryotic cells. Here we describe the identification of AtBS14a and AtBS14b, putative SNAREs from Arabidopsis thaliana that share 60% amino acid sequence identity. Both AtBS14a and BS14b are dosage suppressors of the temperature-sensitive growth defect in sft1-1 cells and over-expression of either AtBS14a or AtBS14b can support the growth of sft1Δ cells but not bet1Δ cells. These data together with structure–function and biochemical studies presented herein suggest that AtBS14a and AtBS14b share properties that are consistent with them being members of the Bet1/Sft1 SNARE protein family. 相似文献
5.
Summary Methylation of a membrane-associated protein with an apparent molecular mass of 40000 daltons has been observed in Bacillus subtilis. The methylation was nutrient dependent and occurred with a doubling time of 4 ± 1 min. In wild-type strains, the half-life of turnover of the methyl group(s) was 17 ± 6 min. Several isogenic strains of B. subtilis containing spo0 mutations (spo0A and spo0H) were found to be normal in glutamate-dependent methylation of the protein and turnover of the methyl group(s). In strains containing spo0B and spo0E mutations, the methyl group(s) were incorporated in response to glutamate addition but turnover was not at a normal rate. The half-life of methyl group turnover was extended to 45 ± 3 min in these strains. In a spo0K mutant and in spoILI and spoIIF mutants, the protein was not significantly methylated. The methylation of a 40000 dalton protein was also found to be dependent on phosphate. This methylation was observed in wild-type and spo0A and spo0H strains with a doubling time of 4 ± 1 min and a half-life of turnover of the methyl group(s) of 11 + 3 min. In strains containing spo0B, spo0E, and spo0F mutations, the phosphate-dependent incorporation of the methyl group(s) was normal (5 ± 1 min) but the turnover half-life was extended to 46 ± 8 min. It is not known whether the nitrogen-dependent and phosphate-dependent systems methylated the same protein. The spo0 mutants are defective in the initial stages of sporulation, and it has been proposed that the spo0 gene products may play a role in nutrient sensing. The discovery of defects in the methylation of the 40 kDa protein in some of these spo0 mutants supports the proposal that the protein methylation may be part of a nutrient sensing system for the control of growth and sporulation in Bacillus species. 相似文献
6.
7.
Gsp1p is a small nuclear-located GTP binding protein from the yeast Saccharomyces cerevisiae. It is highly conserved among eucaryotic cells and is involved in numerous cellular processes, including nucleocytoplasmic trafficking of macromolecules. To learn more about the GSP1 structure/function, we have characterized its Candida albicans homologue. CaGsp1p is 214 amino acids long and displays 91% identity to the ScGsp1p. There is functional complementation in S. cerevisiae, and its mRNA is constitutively expressed in the diploid C. albicans grown under various physiological conditions. Disruption of both alleles was not possible, suggesting that it could be an essential gene, but heterozygous mutants exhibited genomic instability. 相似文献
8.
9.
10.
Akio Toh-e Kazuma Tanaka Yukifumi Uesono Reed B. Wickner 《Molecular & general genetics : MGG》1988,214(1):162-164
Summary The product of the PHO85 gene, which encodes one of the negative regulatory factors of the PHO system in Saccharomyces cerevisiae, shows significant amino acid sequence homology with the CDC28 protein kinase. However, overexpressing PHO85 did not suppress the temperature sensitive phenotype of the cdc28-1 mutation. The nucleotide sequence of the PHO85 gene strongly suggests the presence of an intron near the sequence encoding the N-terminal region. 相似文献
11.
12.
Arianna Lee Karen L. Clark Martin Fleischmann Markus Aebi Michael W. Clark 《Molecular & general genetics : MGG》1994,245(1):32-44
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth. 相似文献
13.
Summary The TFS1 gene of Saccharomyces cerevisiae is a dosage-dependent suppressor of cdc25 mutations. Overexpression of TFS1 does not alleviate defects of temperature-sensitive adenylyl cyclase (cdc35) or ras2 disruption mutations. The ability of TFS1 to suppress cdc25 is allele specific: the temperature-sensitive cdc25-1 mutation is suppressed efficiently but the cdc25-5 mutation and two disruption mutations are only partially suppressed. TFS1 maps to a previously undefined locus on chromosome XII between RDN1 and CDC42. The DNA sequence of TFS1 contains a single long open reading frame encoding a 219 amino acid polypeptide that is similar in sequence to two mammalian brain proteins. Insertion and deletion mutations in TFS1 are haploviable, indicating that TFS1 is not essential for growth. 相似文献
14.
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase inSaccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity oflte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that oflte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic toCDC15, which encodes a protein kinase. Thecdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression oflte1. We isolatedCDC14 as a low-copy-number suppressor ofcdc15-rlt1.CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy ofCDC14 suppressed the temperature sensitivity ofcdc15-rlt1 cells, but not that ofcdc15-1 cells. In addition, some residues that are essential for the Cdc14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase. 相似文献
15.
Nicole Fognini-Lefebvre Jean Claude Lazzaroni Raymond Portalier 《Molecular & general genetics : MGG》1987,209(2):391-395
Summary Mutants of Escherichia coli K12 carrying exc mutations inducing the release of the plasmid pBR322-encoded -lactamase (EC 3.5.2.6) into the extracellular medium were analysed and compared with previously described excretory mutants carrying lky mutations associated with the release of alkaline phosphatase and to tolA and tolB mutants, originally described as tolerant towards various colicins. The exc, lky and tol mutations mapped near the gal operon at min 16.5 of the E. coli linkage map. A genetic analysis presented in this paper showed that some exc and lky mutations belonged to the tolA and tolB complementation groups. Furthermore, we identified a third cistron, excC, involved in the excretion of periplasmic enzymes but distinct from the two others. 相似文献
16.
Summary The two-step protein secretion pathway in Pseudomonas aeruginosa is dependent on the xcp genes. We investigated whether a similar secretion mechanism is present in non-pathogenic Pseudomonas spp. and in other gram-negative bacteria. The plant growth stimulating Pseudomonas strains P. putida WCS358, P. fuorescens WCS374 and Pseudomonas 1310 appeared to secrete proteins into the extracellular medium. Southern hybridization experiments showed the presence of xcp genes in these strains and also in other gram-negative bacteria, including Xanthomonas campestris. Complementation experiments showed that the xcp gene cluster of P. aeruginosa restored protein secretion in an X. campestris secretion mutant. The secretion gene cluster of X. campestris however, restored secretion capacity in P. aeruginosa mutants only to a low degree. Two heterologous proteins were not secreted by P. fuorescens and P. aeruginosa. The results suggest the presence of a similar two-step protein secretion mechanism in different gram-negative bacteria, which however, is not always functional for heterologous proteins. 相似文献
17.
Recombinant Candida rugosa LIP2 expression in Pichia pastoris under the control of the AOX1 promoter
Pau Ferrer Manuel Alarcn Ramn Ramn María Dolors Benaiges Francisco Valero 《Biochemical Engineering Journal》2009,46(3):271-277
The LIP2 isoenzyme gene from Candida rugosa has been completely synthesised and functionally expressed under the AOX1 promoter control in Pichia pastoris. The on-line monitoring and control of methanol, the key inducer carbon source in fed-batch cultures, has enhanced the yield product/biomass 7.8-fold and the productivity 12.8-fold compared to the best batch cultivation with the Pichia system and, 10-fold compared to the fed-batch cultivation process using the native C. rugosa strain.Nevertheless, the high ionic strength of culture broth favoured aggregation of Lip2, leading to total loss of lipolytic activity. After cultivation, a diaultrafiltration process was implemented to diminish ionic strength, allowing for the recovery of lipolytic activity in the diaultrafiltrate. The developed bioprocess resulted into a reproducible product in terms of quality and productivity. 相似文献
18.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins. 相似文献
19.
Thomas J. Schmidhauser Yi-Zhong Liu Hongjian Liu Siqun Zhou 《Fungal genetics and biology : FG & B》1997,21(3):323-328
We have cloned fourNeurospora crassagenes by complementation analysis. Cloned genes include thearginine-1(arg-1),methionine-6(met-6),unknown-7(un-7), andribosome production-1(rip-1) loci. Chromosome walks were initiated in ordered cosmid libraries from the cloned loci. A total of about 700 kb of theNeurosporagenome is covered in these walks. 相似文献
20.
Satoshi Yoshida Eri Ikeda Isao Uno Hiroshi Mitsuzawa 《Molecular & general genetics : MGG》1992,231(3):337-344
Summary Staurosporine is an antibiotic that specifically inhibits protein kinase C. Fourteen staurosporine- and temperature-sensitive (stt) mutants of Saccharomyces cerevisiae were isolated and characterized. These mutants were divided into ten complementation groups, and characterized for their cross-sensitivity to K-252a, neomycin, or CaCl2, The STT1 gene was cloned and sequenced. The nucleotide sequence of the STT1 gene revealed that STT1 is the same gene as PKC1. The STT1 gene conferred resistance to staurosporine on wild-type cells, when present on a high copy number plasmid. STT1/stt1::HIS3 diploid cells were more sensitive to staurosporine than STT1/STT1 diploid cells. Analysis of temperature-sensitive stt1 mutants showed that the STT1 gene product functioned in S or G2/M phase. These results suggest that a protein kinase (the STT1 gene product) is one of the essential targets of staurosporine in yeast cells. 相似文献