首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), also known as amyloid beta-peptide-binding alcohol dehydrogenase (ABAD), has been implicated in the development of Alzheimer's disease. This protein, a member of the short-chain dehydrogenase/reductase family of enzymes, has been shown to bind beta-amyloid and to participate in beta-amyloid neurotoxicity. We have determined the crystal structure of human ABAD/HSD10 complexed with NAD(+) and an inhibitory small molecule. The inhibitor occupies the substrate-binding site and forms a covalent adduct with the NAD(+) cofactor. The crystal structure provides a basis for the design of potent, highly specific ABAD/HSD10 inhibitors with potential application in the treatment of Alzheimer's disease.  相似文献   

2.
Uronate dehydrogenase from Agrobacterium tumefaciens (AtUdh) belongs to the short-chain dehydrogenase/reductase superfamily and catalyzes the oxidation of D-galacturonic acid and D-glucuronic acid with NAD(+) as a cofactor. We have determined the crystal structures of an apo-form of AtUdh, a ternary form in complex with NADH and product (substrate-soaked structure), and an inactive Y136A mutant in complex with NAD(+). The crystal structures suggest AtUdh to be a homohexamer, which has also been observed to be the major form in solution. The monomer contains a Rossmann fold, essential for nucleotide binding and a common feature of the short-chain dehydrogenase/reductase family enzymes. The ternary complex structure reveals a product, D-galactaro-1,5-lactone, which is bound above the nicotinamide ring. This product rearranges in solution to D-galactaro-1,4-lactone as verified by mass spectrometry analysis, which agrees with our previous NMR study. The crystal structure of the mutant with the catalytic residue Tyr-136 substituted with alanine shows changes in the position of Ile-74 and Ser-75. This probably altered the binding of the nicotinamide end of NAD(+), which was not visible in the electron density map. The structures presented provide novel insights into cofactor and substrate binding and the reaction mechanism of AtUdh. This information can be applied to the design of efficient microbial conversion of D-galacturonic acid-based waste materials.  相似文献   

3.
Gatzeva-Topalova PZ  May AP  Sousa MC 《Biochemistry》2004,43(42):13370-13379
Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa can modify the structure of lipid A in their outer membrane with 4-amino-4-deoxy-l-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification and polymyxin resistance. ArnA is a bifunctional enzyme. It can catalyze (i) the NAD(+)-dependent decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose. We show that the NAD(+)-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of ArnA. This domain is separable from the N-terminal fragment, and its activity is identical to that of the full-length enzyme. The crystal structure of the ArnA decarboxylase domain from E. coli is presented here. The structure confirms that the enzyme belongs to the short-chain dehydrogenase/reductase (SDR) family. On the basis of sequence and structure comparisons of the ArnA decarboxylase domain with other members of the short-chain dehydrogenase/reductase (SDR) family, we propose a binding model for NAD(+) and UDP-glucuronic acid and the involvement of residues T(432), Y(463), K(467), R(619), and S(433) in the mechanism of NAD(+)-dependent oxidation of the 4'-OH of the UDP-glucuronic acid and decarboxylation of the UDP-4-keto-glucuronic acid intermediate.  相似文献   

4.
The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.  相似文献   

5.
The open reading frame TM1643 of Thermotoga maritima belongs to a large family of proteins, with homologues in bacteria, archaea, and eukaryotes. TM1643 is found in an operon with two other genes that encode enzymes involved in the biosynthesis of NAD. In several bacteria, the gene in the position occupied by TM1643 encodes an aspartate oxidase (NadB), which synthesizes iminoaspartate as a substrate for NadA, the next enzyme in the pathway. The amino acid sequence of TM1643 does not share any recognizable homology with aspartate oxidase or with other proteins of known functions or structures. To help define the biological functions of TM1643, we determined its crystal structure at 2.6A resolution and performed a series of screens for enzymatic function. The structure reveals the presence of an N-terminal Rossmann fold domain with a bound NAD(+) cofactor and a C-terminal alpha+beta domain. The structural information suggests that TM1643 may be a dehydrogenase and the active site of the enzyme is located at the interface between the two domains. The enzymatic characterization of TM1643 revealed that it possesses NAD or NADP-dependent dehydrogenase activity toward l-aspartate but no aspartate oxidase activity. The product of the aspartate dehydrogenase activity is also iminoaspartate. Therefore, our studies demonstrate that two different enzymes, an oxidase and a dehydrogenase, may have evolved to catalyze the first step of NAD biosynthesis in prokaryotes. TM1643 establishes a new class of amino acid dehydrogenases.  相似文献   

6.
Lei Y  Pawelek PD  Powlowski J 《Biochemistry》2008,47(26):6870-6882
The meta-cleavage pathway for catechol is a central pathway for the bacterial dissimilation of a wide variety of aromatic compounds, including phenols, methylphenols, naphthalenes, and biphenyls. The last enzyme of the pathway is a bifunctional aldolase/dehydrogenase that converts 4-hydroxy-2-ketovalerate to pyruvate and acetyl-CoA via acetaldehyde. The structure of the NAD (+)/CoASH-dependent aldehyde dehydrogenase subunit is similar to that of glyceraldehyde-3-phosphate dehydrogenase, with a Rossmann fold-based NAD (+) binding site observed in the NAD (+)-enzyme complex [Manjasetty, B. A., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6992-6997]. However, the location of the CoASH binding site was not determined. In this study, hydrogen-deuterium exchange experiments, coupled with peptic digest and mass spectrometry, were used to examine cofactor binding. The pattern of hydrogen-deuterium exchange in the presence of CoASH was almost identical to that observed with NAD (+), consistent with the two cofactors sharing a binding site. This is further supported by the observations that either CoASH or NAD (+) is able to elute the enzyme from an NAD (+) affinity column and that preincubation of the enzyme with NAD (+) protects against inactivation by CoASH. Consistent with these data, models of the CoASH complex generated using AUTODOCK showed that the docked conformation of CoASH can fully occupy the cavity containing the enzyme active site, superimposing with the NAD (+) cofactor observed in the X-ray crystal structure. Although CoASH binding Rossmann folds have been described previously, this is the first reported example of a Rossmann fold that can alternately bind CoASH or NAD (+) cofactors required for enzymatic catalysis.  相似文献   

7.
Vogan EM  Bellamacina C  He X  Liu HW  Ringe D  Petsko GA 《Biochemistry》2004,43(11):3057-3067
CDP-D-glucose 4,6-dehydratase catalyzes the conversion of CDP-D-glucose to CDP-4-keto-6-deoxyglucose in an NAD(+)-dependent manner. The product of this conversion is a building block for a variety of primary antigenic determinants in bacteria, possibly implicated directly in reactive arthritis. Here, we describe the solution of the high-resolution crystal structure of CDP-D-glucose 4,6-dehydratase from Yersinia pseudotuberculosis in the resting state. This structure represents the first CDP nucleotide utilizing dehydratase of the short-chain dehydrogenase/reductase (SDR) family to be determined, as well as the first tetrameric structure of the subfamily of SDR enzymes in which NAD(+) undergoes a full reaction cycle. On the basis of a comparison of this structure with structures of homologous enzymes, a chemical mechanism is proposed in which Tyr157 acts as the catalytic base, initiating hydride transfer by abstraction of the proton from the sugar 4'-hydroxyl. Concomitant with the removal of the proton from the 4'-hydroxyl oxygen, the sugar 4'-hydride is transferred to the B face of the NAD(+) cofactor, forming the reduced cofactor and a CDP-4-keto-d-glucose intermediate. A conserved Lys161 most likely acts to position the NAD(+) cofactor so that hydride transfer is favorable and/or to reduce the pK(a) of Tyr157. Following substrate oxidation, we propose that Lys134, acting as a base, would abstract the 5'-hydrogen of CDP-4-keto-D-glucose, priming the intermediate for the spontaneous loss of water. Finally, the resulting Delta(5,6)-glucoseen intermediate would be reduced suprafacially by the cofactor, and reprotonation at C-5' is likely mediated by Lys134.  相似文献   

8.
(-)-Matairesinol is a central biosynthetic intermediate to numerous 8-8'-lignans, including the antiviral agent podophyllotoxin in Podophyllum species and its semi-synthetic anticancer derivatives teniposide, etoposide, and Etopophos. It is formed by action of an enantiospecific secoisolariciresinol dehydrogenase, an NAD(H)-dependent oxidoreductase that catalyzes the conversion of (-)-secoisolariciresinol. Matairesinol is also a plant-derived precursor of the cancer-preventative "mammalian" lignan or "phytoestrogen" enterolactone, formed in the gut following ingestion of high fiber dietary foodstuffs, for example. Additionally, secoisolariciresinol dehydrogenase is involved in pathways to important plant defense molecules, such as plicatic acid in the western red cedar (Thuja plicata) heartwood. To understand the molecular and enantiospecific basis of Podophyllum secoisolariciresinol dehydrogenase, crystal structures of the apo-form and binary/ternary complexes were determined at 1.6, 2.8, and 2.0 angstrom resolution, respectively. The enzyme is a homotetramer, consisting of an alpha/beta single domain monomer containing seven parallel beta-strands flanked by eight alpha-helices on both sides. Its overall monomeric structure is similar to that of NAD(H)-dependent short-chain dehydrogenases/reductases, with a conserved Asp47 forming a hydrogen bond with both hydroxyl groups of the adenine ribose of NAD(H), and thus specificity toward NAD(H) instead of NADP(H). The highly conserved catalytic triad (Ser153, Tyr167, and Lys171) is adjacent to both NAD(+) and substrate molecules, where Tyr167 functions as a general base. Following analysis of high resolution structures of the apo-form and two complex forms, the molecular basis for both the enantio-specificity and the reaction mechanism of secoisolariciresinol dehydrogenase is discussed and compared with that of pinoresinol-lariciresinol reductase.  相似文献   

9.
Mammalian 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) is a member of the short chain dehydrogenase/reductase. It is a key steroidogenic enzyme that catalyzes the first step of the multienzyme pathway conversion of circulating dehydroepiandrosterone and pregnenolone to active steroid hormones. A three dimensional model of a ternary complex of human 3beta-HSD type 1 (3beta-HSD_1) with an NAD cofactor and androstenedione product has been developed based upon X-ray structures of the ternary complex of E. coli UDP-galactose 4-epimerase (UDPGE) with an NAD cofactor and substrate (PDB_AC: 1NAH) and the ternary complex of human type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD_1) with an NADP cofactor and androstenedione (PDB_AC: 1QYX). The dimeric structure of the enzyme was built from two monomer models of 3beta-HSD_1 by respective 3D superposition with A and B subunits of the dimeric structure of Streptococcus suis DTDP-D-glucose 4,6-dehydratase (PDB_AC: 1KEP). The 3D model structure of 3beta-HSD_1 has been successfully used for the rational design of mutagenic experiments to further elucidate the key substrate binding residues in the active site as well as the basis for dual function of the 3beta-HSD_1 enzyme. The structure based mutant enzymes, Asn100Ser, Asn100Ala, Glu126Leu, His232Ala, Ser322Ala and Asn323Leu, have been constructed and functionally characterized. The mutagenic experiments have confirmed the predicted roles of the His232 and Asn323 residues in recognition of the 17-keto group of the substrate and identified Asn100 and Glu126 residues as key residues that participate for the dehydrogenase and isomerization reactions, respectively.  相似文献   

10.
Drosophila alcohol dehydrogenase (ADH), an NAD(+)-dependent dehydrogenase, shares little sequence similarity with horse liver ADH. However, these two enzymes do have substantial similarity in their secondary structure at the NAD(+)-binding domain [Benyajati, C., Place, A. P., Powers, D. A. & Sofer, W. (1981) Proc. Natl Acad. Sci. USA 78, 2717-2721]. Asp38, a conserved residue between Drosophila and horse liver ADH, appears to interact with the hydroxyl groups of the ribose moiety in the AMP portion of NAD+. A secondary-structure comparison between the nucleotide-binding domain of NAD(+)-dependent enzymes and that of NADP(+)-dependent enzymes also suggests that Asp38 could play an important role in cofactor specificity. Mutating Asp38 of Drosophila ADH into Asn38 decreases Km(app)NADP 62-fold and increases kcat/Km(app)NADP 590-fold at pH 9.8, when compared with wild-type ADH. These results suggest that Asp38 is in the NAD(+)-binding domain and its substituent, Asn38, allows Drosophila ADH to use both NAD+ and NADP+ as its cofactor. The observations from the experiments of thermal denaturation and kinetic measurement with pH also confirm that the repulsion between the negative charges of Asp38 and 2'-phosphate of NADP+ is the major energy barrier for NADP+ to serve as a cofactor for Drosophila ADH.  相似文献   

11.
The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase activities are optimal at pH 7.0 and 9.0, respectively. Both enzyme activities, co-purified on diethylaminoethyl-cellulose and gel filtration columns, were detected on nondenaturing polyacrylamide gels as single bands with identical electrophoretic mobilities and share tissue specificity for the endosperm. The highly purified preparation containing the reductase and dehydrogenase activities showed a single polypeptide band of 125 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native form of the enzyme is a dimer of 260 kD. Limited proteolysis with elastase indicated that lysine-ketoglutarate reductase and saccharopine dehydrogenase from maize endosperm are located in two functionally independent domains of a bifunctional polypeptide.  相似文献   

12.
The beta-hydroxyacid dehydrogenases are a structurally conserved family of enzymes that catalyze the NAD(+) or NADP(+)-dependent oxidation of specific beta-hydroxyacid substrates like beta-hydroxyisobutyrate. These enzymes share distinct domains of amino acid sequence homology, most of which now have assigned putative functions. 6-phosphogluconate dehydrogenase and beta-hydroxyisobutyrate dehydrogenase, the most well-characterized members, both appear to be readily inactivated by chemical modifiers of lysine residues, such as 2,4,6-trinitrobenzene sulfonate (TNBS). Peptide mapping by ESI-LCMS showed that inactivation of beta-hydroxyisobutyrate dehydrogenase with TNBS occurs with the labeling of a single lysine residue, K248. This lysine residue is completely conserved in all family members and may have structural importance relating to cofactor binding. The structural framework of the beta-hydroxyacid dehydrogenase family is shared by many bacterial homologues. One such homologue from E. coli has been cloned and expressed as recombinant protein. This protein was found to have enzymatic activity characteristic of tartronate semialdehyde reductase, an enzyme required for bacterial biosynthesis of D-glycerate. A homologue from H. influenzae was also cloned and expressed as recombinant protein. This protein was active in the oxidation of D-glycerate, but showed approximately ten-fold higher activity with four carbon substrates like beta-D-hydroxybutyrate and D-threonine. This enzyme might function in H. influenzae, and other species, in the utilization of polyhydroxybutyrates, an energy storage form specific to bacteria. Cloning and characterization of these bacterial beta-hydroxyacid dehydrogenases extends our knowledge of this enzyme family.  相似文献   

13.
L-Xylulose reductase (XR) is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. In this study we report the structure of the biological tetramer of human XR in complex with NADP(+) and a competitive inhibitor solved at 2.3 A resolution. A single subunit of human XR is formed by a centrally positioned, seven-stranded, parallel beta-sheet surrounded on either side by two arrays of three alpha-helices. Two helices located away from the main body of the protein form the variable substrate-binding cleft, while the dinucleotide coenzyme-binding motif is formed by a classical Rossmann fold. The tetrameric structure of XR, which is held together via salt bridges formed by the guanidino group of Arg203 from one monomer and the carboxylate group of the C-terminal residue Cys244 from the neighboring monomer, explains the ability of human XR to prevent the cold inactivation seen in the rodent forms of the enzyme. The orientations of Arg203 and Cys244 are maintained by a network of hydrogen bonds and main-chain interactions of Gln137, Glu238, Phe241, and Trp242. These interactions are similar to those defining the quaternary structure of the closely related carbonyl reductase from mouse lung. Molecular modeling and site-directed mutagenesis identified the active site residues His146 and Trp191 as forming essential contacts with inhibitors of XR. These results could provide a structural basis in the design of potent and specific inhibitors for human XR.  相似文献   

14.
(6R)-2,2,6-Trimethyl-1,4-cyclohexanedione (levodione) reductase was isolated from a cell extract of the soil isolate Corynebacterium aquaticum M-13. This enzyme catalyzed regio- and stereoselective reduction of levodione to (4R,6R)-4-hydroxy-2,2, 6-trimethylcyclohexanone (actinol). The relative molecular mass of the enzyme was estimated to be 142,000 Da by high-performance gel permeation chromatography and 36,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme required NAD(+) or NADH as a cofactor, and it catalyzed reversible oxidoreduction between actinol and levodione. The enzyme was highly activated by monovalent cations, such as K(+), Na(+), and NH(4)(+). The NH(2)-terminal and partial amino acid sequences of the enzyme showed that it belongs to the short-chain alcohol dehydrogenase/reductase family. This is the first report of levodione reductase.  相似文献   

15.
Background: GDP-mannose 4,6 dehydratase (GMD) catalyzes the conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose. This is the first and regulatory step in the de novo biosynthesis of GDP-(L)-fucose. Fucose forms part of a number of glycoconjugates, including the ABO blood groups and the selectin ligand sialyl Lewis X. Defects in GDP-fucose metabolism have been linked to leukocyte adhesion deficiency type II (LADII). Results: The structure of the GDP-mannose 4,6 dehydratase apo enzyme has been determined and refined using data to 2.3 A resolution. GMD is a homodimeric protein with each monomer composed of two domains. The larger N-terminal domain binds the NADP(H) cofactor in a classical Rossmann fold and the C-terminal domain harbors the sugar-nucleotide binding site. We have determined the GMD dissociation constants for NADP, NADPH and GDP-mannose. Each GMD monomer binds one cofactor and one substrate molecule, suggesting that both subunits are catalytically competent. GDP-fucose acts as a competitive inhibitor, suggesting that it binds to the same site as GDP-mannose, providing a mechanism for the feedback inhibition of fucose biosynthesis. Conclusions: The X-ray structure of GMD reveals that it is a member of the short-chain dehydrogenase/reductase (SDR) family of proteins. We have modeled the binding of NADP and GDP-mannose to the enzyme and mutated four of the active-site residues to determine their function. The combined modeling and mutagenesis data suggests that at position 133 threonine substitutes serine as part of the serine-tyrosine-lysine catalytic triad common to the SDR family and Glu 135 functions as an active-site base.  相似文献   

16.
L-threonine dehydrogenase (TDH) is an enzyme that catalyzes the oxidation of L-threonine to 2-amino-3-ketobutyrate. We solved the first crystal structure of a medium chain L-threonine dehydrogenase from a hyperthermophilic archaeon, Pyrococcus horikoshii (PhTDH), by the single wavelength anomalous diffraction method using a selenomethionine-substituted enzyme. This recombinant PhTDH is a homo-tetramer in solution. Three monomers of PhTDHs were located in the crystallographic asymmetric unit, however, the crystal structure exhibits a homo-tetramer structure with crystallographic and non-crystallographic 222 symmetry in the cell. Despite the low level of sequence identity to a medium-chain NAD(H)-dependent alcohol dehydrogenase (ADH) and the different substrate specificity, the overall folds of the PhTDH monomer and tetramer are similar to those of the other ADH. Each subunit is composed of two domains: a nicotinamide cofactor (NAD(H))-binding domain and a catalytic domain. The NAD(H)-binding domain contains the alpha/beta Rossmann fold motif, characteristic of the NAD(H)-binding protein. One molecule of PhTDH contains one zinc ion playing a structural role. This metal ion exhibits coordination with four cysteine ligands and some of the ligands are conserved throughout the structural zinc-containing ADHs and TDHs. However, the catalytic zinc ion that is coordinated at the bottom of the cleft in the case of ADH was not observed in the crystal of PhTDH. There is a significant difference in the orientation of the catalytic domain relative to the coenzyme-binding domain that results in a larger interdomain cleft.  相似文献   

17.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

18.
The crystal structure of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni (3alpha-HSDH) as well as the structure of its binary complex with NAD(+) have been solved at 1.68-A and 1.95-A resolution, respectively. The enzyme is a member of the short chain dehydrogenase/reductase (SDR) family. Accordingly, the active center and the conformation of the bound nucleotide cofactor closely resemble those of other SDRs. The crystal structure reveals one homodimer per asymmetric unit representing the physiologically active unity. Dimerization takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far this type of intermolecular contact has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSDH by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure.  相似文献   

19.
Pyridoxal-5′-phosphate (the active form of vitamin B6) is an essential cofactor in many enzymatic reactions. While animals lack any of the pathways for de novo synthesis and salvage of vitamin B6, it is synthesized by two distinct biosynthetic routes in bacteria, fungi, parasites, and plants. One of them is the PdxA/PdxJ pathway found in the γ subdivision of proteobacteria. It depends on the pdxB gene, which encodes erythronate-4-phosphate dehydrogenase (PdxB), a member of the d-isomer specific 2-hydroxyacid dehydrogenase superfamily. Although three-dimensional structures of other functionally related dehydrogenases are available, no structure of PdxB has been reported. To provide the missing structural information and to gain insights into the catalytic mechanism, we have determined the first crystal structure of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa in the ligand-bound state. It is a homodimeric enzyme consisting of 380-residue subunits. Each subunit consists of three structural domains: the lid domain, the nucleotide-binding domain, and the C-terminal dimerization domain. The latter domain has a unique fold and is largely responsible for dimerization. Interestingly, two subunits of the dimeric enzyme are bound with different combinations of ligands in the crystal and they display significantly different conformations. Subunit A is bound with NAD and a phosphate ion, while subunit B, with a more open active site cleft, is bound with NAD and l(+)-tartrate. Our structural data allow a detailed understanding of cofactor and substrate recognition, thus providing substantial insights into PdxB catalysis.  相似文献   

20.
We present here the 2.3-A crystal structure of the Escherichia coli YdiB protein, an orthologue of shikimate 5-dehydrogenase. This enzyme catalyzes the reduction of 3-dehydroshikimate to shikimate as part of the shikimate pathway, which is absent in mammals but required for the de novo synthesis of aromatic amino acids, quinones, and folate in many other organisms. In this context, the shikimate pathway has been promoted as a target for the development of antimicrobial agents. The crystal structure of YdiB shows that the protomer contains two alpha/beta domains connected by two alpha-helices, with the N-terminal domain being novel and the C-terminal domain being a Rossmann fold. The NAD+ cofactor, which co-purified with the enzyme, is bound to the Rossmann domain in an elongated fashion with the nicotinamide ring in the pro-R conformation. Its binding site contains several unusual features, including a cysteine residue in close apposition to the nicotinamide ring and a clamp over the ribose of the adenosine moiety formed by phenylalanine and lysine residues. The structure explains the specificity for NAD versus NADP in different members of the shikimate dehydrogenase family on the basis of variations in the amino acid identity of several other residues in the vicinity of this ribose group. A cavity lined by residues that are 100% conserved among all shikimate dehydrogenases is found between the two domains of YdiB, in close proximity to the hydride acceptor site on the nicotinamide ring. Shikimate was modeled into this site in a geometry such that all of its heteroatoms form high quality hydrogen bonds with these invariant residues. Their strong conservation in all orthologues supports the possibility of developing broad spectrum inhibitors of this enzyme. The nature and disposition of the active site residues suggest a novel reaction mechanism in which an aspartate acts as the general acid/base catalyst during the hydride transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号