首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.  相似文献   

3.
4.
Complementary metal oxide semiconductor (CMOS) microelectronic chips fulfill important functions in the field of biomedical research, ranging from the generation of high complexity DNA and protein arrays to the detection of specific interactions thereupon. Nevertheless, the issue of merging pure CMOS technology with a chemically stable surface modification which further resists interfering nonspecific protein adsorption has not been addressed yet. We present a novel surface coating for CMOS microchips based on poly(ethylene glycol)methacrylate graft polymer films, which in addition provides high loadings of functional groups for the linkage of probe molecules. The coated microchips were compatible with the harshest conditions emerging in microarray generating methods, thoroughly retaining structural integrity and microelectronic functionality. Nonspecific adsorption of proteins on the chip's surface was completely obviated even with complex serum protein mixtures. We could demonstrate the background-free antibody staining of immobilized probe molecules without using any blocking agents, encouraging further integration of CMOS technology in proteome research.  相似文献   

5.
Atrial natriuretic peptide deposited as atrial amyloid fibrils   总被引:4,自引:0,他引:4  
Deposition of amyloid in the atria is exceedingly common in the aging heart. We have extracted amyloid fibrils from atria and purified a major protein which had N-terminal amino acid sequence identical to that of atrial natriuretic peptide (ANP). Antisera to ANP and to the amyloid fibril protein both labelled atrial muscle cells and atrial amyloid in an identical way.  相似文献   

6.
Amyloid fibrils are a form of protein nanofiber that show promise as components of multifunctional bionanomaterials. In this work, native bovine insulin and bovine insulin that had been previously converted into amyloid fibrils were combined with poly(vinyl alcohol) (PVOH) via solution casting to determine the effect of fibrillization on the thermomechanical properties of the resulting composite. The synthesis method was found to preserve the amyloid fibril structure and properties of the resulting fibril-PVOH composite were investigated. At a filling level of 0.6 wt %, the fibril-reinforced PVOH was 15% stiffer than the PVOH control. Various properties of the films, including the glass transition temperature, degradation temperature, microstructure, and film morphology were characterized. Although more work is required to optimize the properties of the composites, this study provides proof of principle that incorporation of amyloid fibrils into a polymeric material can impart useful changes to the mechanical and morphological properties of the films.  相似文献   

7.
8.
We report here that a monomeric de novo designed alpha-helix-turn-alpha-helix peptide, alpha t alpha, when incubated at 37 degrees C in an aqueous buffer at neutral pH, forms nonbranching, protease resistant fibrils that are 6-10 nm in diameter. These fibrils are rich in beta-sheet and bind the amyloidophilic dye Congo red. alpha t alpha fibrils thus display the morphologic, structural, and tinctorial properties of authentic amyloid fibrils. Surprisingly, unlike fibrils formed by peptides such as the amyloid beta-protein or the islet amyloid polypeptide, alpha t alpha fibrils were not toxic to cultured rat primary cortical neurons or PC12 cells. These results suggest that the potential to form fibrils under physiologic conditions is not limited to those proteins associated with amyloidoses and that fibril formation alone is not predictive of cytotoxic activity.  相似文献   

9.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

10.
Infections are the most common cause of biomaterial implant failure representing a constant challenge to the more widespread application of medical implants. This study reports on the preparation and characterization of novel hydrophilic copolymeric systems provided with antibacterial properties coming from eugenol residues anchored to the macromolecular chains. Thus, high conversion copolymers were prepared from the hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA) and different eugenol monomeric derivatives, eugenyl methacrylate (EgMA) and ethoxyeugenyl methacrylate (EEgMA), by bulk polymerization reaction. Thermal evaluation revealed glass transition temperature values in the range 95-58 degrees C following the order HEMA-co-EgMA > PHEMA > HEMA-co-EEgMA and a clear increase in thermal stability with the presence of any eugenyl monomer in the system. In vitro wettability studies showed a reduction of water sorption capacity and surface free energy values with increasing the content of eugenol residues in the copolymer. The antimicrobial activity of copolymeric discs was evaluated by determining their capacity to reduce or inhibit colony formation by different bacterial species. All eugenyl containing materials showed bacteria growth inhibition, this one being higher for the EEgMA derivative copolymers.  相似文献   

11.
The characterization of the molecular structure and physical properties of self-assembling peptides is an important aspect of optimizing their utility as scaffolds for biomaterials and other applications. Here we report the formation of autofluorescent fibrils by an octapeptide (GVGVAGVG) derived via a single amino acid substitution in one of the hydrophobic repeat elements of human elastin. This is the shortest and most well-defined peptide so far reported to exhibit intrinsic fluorescence in the absence of a discrete fluorophore. Structural characterization by FTIR and solid-state NMR reveals a predominantly β-sheet conformation for the peptide in the fibrils, which are likely assembled in an amyloid-like cross-β structure. Investigation of dynamics and the effects of hydration on the peptide are consistent with a rigid, water excluded structure, which has implications for the likely mechanism of intrinsic fibril fluorescence.  相似文献   

12.
α-Synuclein (α-Syn) fibrils are the major component of Lewy bodies that are closely associated with the pathogenesis of Parkinson’s disease, but the mechanism for the fibril assembly remains poorly understood. Here we report using a combination of peptide truncation and atomic force microscopy (AFM) to elucidate the self-assembly and morphology of the α-Syn fibrils. The results show that protease K significantly slims the fibrils from the mean height of ∼6.6 to ∼4.7 nm, whereas chaotropic denaturant urea completely breaks down the fibrils into small particles. The in situ enzymatic digestion also results in thinning of the fibrils, giving rise to some nicks on the fibrils. Moreover, N- or C-terminally truncated α-Syn fragments assemble into thinner filaments with the heights depending on the peptide lengths. A nine-residue peptide corresponding to the homologous GAV-motif sequence can form very thin (∼2.2 nm) but long (>1 μm) filaments. Thus, the central sequence of α-Syn forms a fibrillar core by cross-β-structure that is flanked by two flexible termini, and the orientation of the fibril growth is perpendicular to the β-sheet structures.  相似文献   

13.
细菌纤维素在生物医学材料中应用的研究进展   总被引:5,自引:0,他引:5  
细菌纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近来国际上新型生物医学材料的研究热点。本文概括了细菌纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述了细菌纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。  相似文献   

14.
This review mainly introduces the types of silk hydrogels, their processing methods, and applications. There are various methods for hydrogel preparation, and many new processes are being developed for various applications. Silk hydrogels can be used in cartilage tissue engineering, drug release materials, 3D scaffolds for cells, and artificial skin, among other applications because of their porous structure and high porosity and the large surface area for growth, migration, adhesion and proliferation of cells that the hydrogels provide. All of these advantages have made silk hydrogels increasingly attractive. In addition, silk hydrogels have wide prospects for application in the field of biomedical materials. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:630–640, 2015  相似文献   

15.
Makin OS  Serpell LC 《The FEBS journal》2005,272(23):5950-5961
Alzheimer's disease and Creutzfeldt-Jakob disease are the best-known examples of a group of diseases known as the amyloidoses. They are characterized by the extracellular deposition of toxic, insoluble amyloid fibrils. Knowledge of the structure of these fibrils is essential for understanding the process of pathology of the amyloidoses and for the rational design of drugs to inhibit or reverse amyloid formation. Structural models have been built using information from a wide variety of techniques, including X-ray diffraction, electron microscopy, solid state NMR and EPR. Recent advances have been made in understanding the architecture of the amyloid fibril. Here, we describe and compare postulated structural models for the mature amyloid fibril and discuss how the ordered structure of amyloid contributes to its stability.  相似文献   

16.
In this communication, we suggest that transferred residual dipolar couplings (trRDCs) can be employed to restrain the structure of peptide inhibitors transiently binding to beta-amyloid fibrils. The effect is based on the spontaneous alignment of amyloid fibrils with the fibril axis parallel to the magnetic field. This alignment is transferred to the transiently binding peptide inhibitor and is reflected in the size of the trRDCs. We find that the peptide inhibitor adopts a beta-sheet conformation with the backbone N-H and C-H dipolar vectors aligned preferentially parallel and perpendicular, respectively, to the fibril axis.  相似文献   

17.
A range of imaging agents for use in the positron emission tomography of Alzheimer's disease is currently under development. Each of the main compound classes, derived from thioflavin T (PIB), Congo Red (BSB), and aminonaphthalene (FDDNP) are believed to bind to mutually exclusive sites on the beta-amyloid (Abeta) peptide fibrils. We recently reported the presence of three classes of binding sites (BS1, BS2, BS3) on the Abeta fibrils for thioflavin T derivatives and now extend these findings to demonstrate that these sites are also able to accommodate ligands from the other chemotype classes. The results from competition assays using [3H]Me-BTA-1 (BS3 probe) indicated that both PIB and FDDNP were able to displace the radioligand with Ki values of 25 and 42 nM, respectively. BSB was unable to displace the radioligand tracer from the Abeta fibrils. In contrast, each of the compounds examined were able to displace thioflavin T (BS1 probe) from the Abeta fibrils when evaluated in a fluorescence competition assay with Ki values for PIB, FDDNP, and BSB of 1865, 335, and 600 nM, respectively. Finally, the Kd values for FDDNP and BSB binding to Abeta fibrils were directly determined by monitoring the increases in the ligand intrinsic fluorescence, which were 290 and 104 nM, respectively. The results from these assays indicate that (i) the three classes of thioflavin T binding sites are able to accommodate a wide range of chemotype structures, (ii) BSB binds to two sites on the Abeta fibrils, one of which is BS2, and the other is distinct from the thioflavin T derivative binding sites, and (iii) there is no independent binding site on the fibrils for FDDNP, and the ligand binds to both the BS1 and BS3 sites with significantly lower affinities than previously reported.  相似文献   

18.
Two enzymes were purified from actinomycin-synthesizing Streptomyces chrysomallus which could be identified as peptide synthetases involved in the biosynthesis of actinomycin. Actinomycin synthetase II activates the first two amino acids of the peptide chains of the peptide lactone antibiotic, threonine and valine (or isoleucine), as thioesters via their corresponding adenylates. It is a single polypeptide chain of Mr 225,000. Similarly, actinomycin synthetase III activates proline, glycine, and valine (the remaining three amino acids in the antibiotic) as thioesters and is a single polypeptide chain of about Mr 280,000. It also carries the methyltransferase function(s) for N-methylation of thioesterified glycine and valine. In addition, it catalyzes the formation of cyclo(sarcosyl-N-methyl-L-valine) from glycine, L-valine, and S-adenosyl-L-methionine at the expense of ATP. Although the cell-free synthesis of the peptide lactone was not as yet accomplished, the data provide evidence that together with the 4-methyl-3-hydroxyanthranilic acid-activating enzyme (now designated as actinomycin synthetase I) all amino acid-activating protein components of the actinomycin-synthesizing enzyme complex are identified.  相似文献   

19.
Abnormally expanded polyglutamine domains in proteins are associated with several neurodegenerative diseases, including Huntington's disease. Expansion of the polyglutamine (polyQ) domain facilitates aggregation of the affected protein, and several studies directly link aggregation to neurotoxicity. Studies of synthetic polyQ peptides have contributed substantially to our understanding of the mechanism of aggregation. In this report, polyQ fibrils were immobilized onto a sensor, and their elongation by polyQ peptides of various length and conformation was examined using quartz crystal microbalance with dissipation monitoring (QCM-D). The rate of elongation increased as the peptide length increased from 8 to 24 glutamines (Q8, Q20, and Q24). Monomer conformation affected elongation rates: insertion of a β-turn template d-Pro-Gly in the center of the peptide increased elongation rates several-fold, while insertion of Pro-Pro dramatically slowed elongation. Dissipation measurements of the QCM-D provided qualitative information about mechanical properties of the elongating fibrils. These data showed clear differences in the characteristics of the elongating aggregates, depending on the specific identity of the associating polyQ peptide. Elongation rates were sensitive to the pH and ionic strength of the buffer. Comparison of QCM-D data with those obtained by optical waveguide lightmode spectroscopy revealed that very little water was associated with the elongation of fibrils by the peptide containing d-Pro-Gly, but a significant amount of water was associated when the fibrils were elongated by Q20. Together, the data indicate that elongation of polyQ fibrils can occur without full consolidation to the fibril structure, resulting in variations to the aggregate structure during elongation.  相似文献   

20.
Amyloid fibril formation is the hallmark of major human maladies including Alzheimer's disease, type II diabetes, and prion diseases. Prion-like phenomena were also observed in yeast. Although not evolutionarily related, one similarity between the animal PrP and the yeast Sup35 prion proteins is the occurrence of short peptide repeats that are assumed to play a key role in the assembly of the amyloid structures. It was recently demonstrated that typical amyloid fibril formation is associated with biofilm formation by Escherichia coli. Here, we note the functional and structural similarity between oligopeptide repeats of the major curli protein and those of animal and yeast prions. We demonstrate that synthetic peptides corresponding to the repeats form fibrillar structures. Furthermore, conjugation of beta-breaker elements to the prion-like repeat significantly inhibits amyloid formation and cell invasion of curli-expressing bacteria. This implies a functional role of the repeat in the self-assembly of the fibrils. Since mammal prion, yeast prion, and curli protein are evolutionarily distinct, the conserved peptide repeats most likely define an optimized self-association motif that was independently evolved by diverse systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号