首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia imparts radioresistance to tumors, and various approaches have been developed to enhance oxygenation, thereby improving radiosensitivity. This study explores the influence of kinetic and physical factors on substrate metabolism in a tumor model, based on a Krogh cylinder. In tissue, aerobic metabolism is assumed to depend on glucose and oxygen, represented by the product of Michaelis-Menten expressions. For the base case, an inlet pO(2) of 40 mmHg, a hypoxic limit of 5 mmHg, and a tissue/capillary radius ratio of 10 are used. For purely aerobic metabolism, a hypoxic fraction of 0.16 and volume-average pO(2) of 8 mmHg are calculated. Reducing the maximum oxygen rate constant by 9%, decreasing the tissue cylinder radius by 5%, or increasing the capillary radius by 8% abolishes the hypoxic fraction. When a glycolytic term is added, concentration profiles are similar to the base case. Using a distribution of tissue/capillary radius ratios increases the hypoxic fraction and reduces sensitivity to the oxygen consumption rate, compared to the case with a single tissue/capillary radius ratio. This model demonstrates that hypoxia is quite sensitive to metabolic rate and geometric factors. It also predicts quantitatively the effects of inhibited oxygen metabolism and enhanced mass transfer on tumor oxygenation.  相似文献   

2.
3.
4.
The kinetics of glucose transport in human red blood cells   总被引:5,自引:0,他引:5  
A quenched-flow apparatus and a newly developed automated syringe system have been used to measure initial rates of D-[14C]glucose transport into human red blood cells at temperatures ranging from 0 degrees to 53 degrees C. The Haldane relationship is found to be obeyed satisfactorily at both 0 and 20 degrees C, but Arrhenius plots of maximum D-[14C]glucose transport rates are non-linear under conditions of both equilibrium exchange and zero trans influx. Fitting of the data by non-linear regression to the conventional model for glucose transport gives values at 0 degrees C of 0.726 +/- 0.0498 s-1 and 12.1 +/- 0.98 s-1 for the rate constants governing outward and inward movements of the unloaded carrier molecule and 90.3 +/- 3.47 s-1 and 1113 +/- 494 s-1 for outward and inward movements of the carrier-glucose complex. Activation energies for these four rate constants are respectively 173 +/- 3.10, 127 +/- 4.78, 88.0 +/- 6.17 and 31.7 +/- 5.11 kJ X mol-1. These parameters indicate that at low temperatures the marked asymmetry of the transport mechanism arises mainly from the high proportion of inward-facing carriers and carrier-glucose complexes, and that there is a relatively small difference between the affinities of the carrier for glucose in the inward and outward-facing conformations. At high (physiological) temperatures the carrier is fairly evenly distributed between outward- and inward-facing conformations and the affinity for glucose is about 2.5-times greater outside than inside.  相似文献   

5.
6.
Vastus lateralismuscle biopsies were obtained from endurance-trained (running ~50km/wk) and untrained (no regular physical exercise) men, and theexpression of an array of insulin-signaling intermediates wasdetermined. Expression of insulin receptor and insulin receptorsubstrate-1 and -2 was decreased 44% (P < 0.05), 57%(P < 0.001), and 77% (P < 0.001),respectively, in trained vs. untrained muscle. The downstream signalingtarget, Akt kinase, was not altered in trained subjects. Components ofthe mitogenic signaling cascade were also assessed. Extracellularsignal-regulated kinase 1/2 mitogen-activated protein kinase expressionwas 190% greater (P < 0.05), whereas p38 mitogen-activatedprotein kinase expression was 32% lower (P < 0.05), intrained vs. untrained muscle. GLUT-4 protein expression was twofoldhigher (P < 0.05), and the GLUT-4 vesicle-associatedprotein, the insulin-regulated aminopeptidase, was increased 4.7-fold(P < 0.05) in trained muscle. In conclusion, the expressionof proteins involved in signal transduction is altered in skeletalmuscle from well-trained athletes. Downregulation of early componentsof the insulin-signaling cascade may occur in response to increasedinsulin sensitivity associated with endurance training.

  相似文献   

7.
8.
Insulin stimulates glucose transport into muscle and fat cells by enhancing GLUT4 abundance in the plasma membrane through activation of phosphatidylinositol 3-kinase (PI3K). Protein kinase B (PKB) and PKCzeta are known PI3K downstream targets in the regulation of GLUT4. The serum- and glucocorticoid-inducible kinase SGK1 is similarly activated by insulin and capable to regulate cell surface expression of several metabolite transporters. In this study, we evaluated the putative role of SGK1 in the modulation of GLUT4. Coexpression of the kinase along with GLUT4 in Xenopus oocytes stimulated glucose transport. The enhanced GLUT4 activity was paralleled by increased transporter abundance in the plasma membrane. Disruption of the SGK1 phosphorylation site on GLUT4 ((S274A)GLUT4) abrogated the stimulating effect of SGK1. In summary, SGK1 promotes glucose transporter membrane abundance via GLUT4 phosphorylation at Ser274. Thus, SGK1 may contribute to the insulin and GLUT4-dependent regulation of cellular glucose uptake.  相似文献   

9.
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.  相似文献   

10.
11.
12.
The kinetics of the uptake and efflux of 3-O-methyl-glucose in sporidia of Ustilago maydis were measured, both in active cells and in cells whose metabolic activity had been inhibited by azide and iodoacetate. The de-energized transport system proved to be carrier mediated with apparent affinity constants 13 +/- 2 mM outside (Ko) and 18 +/- 2 mM inside (K1). The apparent maximum rate constants for the same system were 0.66 +/- 0.05 mmol/1 cell water per min for uptake (V+) and 0.53 +/- 0.04 mmol/l cell water per min for efflux (V-). For the active system K0 = 0.08 +/- 0.01, K1 greater than 40, V+ = 9.7 +/- 0.5 and V- = 1.1 +/- 0.9 (in equivalent units). These results are discussed in the context of the carrier mechanism as proposed by Regen and Morgan (Regen, D.M. and Morgan, H.E. (1964) Biochim. Biophys. Acta 79, 151--166). The antifungal compound carboxin had no effect on de-energized transport but was shown to decrease both K0 And V+ in the active system. Phloretin and phlorizin were also found to be without effect on de-energized cells but the former enhanced while the latter inhibited active uptake.  相似文献   

13.
14.
Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [(14)C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH.  相似文献   

15.
The possible role of protein kinase C in the regulation of glucose transport in the rat adipose cell has been examined. Both insulin and phorbol 12-myristate 13-acetate (PMA) stimulate 3-O-methylglucose transport in the intact cell ein association with the subcellular redistribution of glucose transporters from the low density microsomes to the plasma membranes, as assessed by cytochalasin B binding. In addition, the actions of insulin and PMA on glucose transport activity and glucose transporter redistribution are additive. Furthermore, PMA accelerates insulin's stimulation of glucose transport activity, reducing the t1/2 from 3.2 +/- 0.4 to 2.1 +/- 0.2 min (mean +/- S.E.). However, the effect of PMA on glucose transport activity is approximately 10% of that for insulin whereas its effect on glucose transporter redistribution is approximately 50% of the insulin response. Immunoblots of the GLUT1 and GLUT4 glucose transporter isoforms in subcellular membrane fractions also demonstrate that the translocations of GLUT1 in response to PMA and insulin are of similar magnitude whereas the translocation of GLUT4 in response to insulin is markedly greater than that in response to PMA. Thus, glucose transport activity in the intact cell with PMA and insulin correlates more closely with the appearance of GLUT4 in the plasma membrane than cytochalasin B-assayable glucose transporters. Although these data do not clarify the potential role of protein kinase C in the mechanism of insulin action, they do suggest that the mechanisms through which insulin and PMA stimulate glucose transport are distinct but interactive.  相似文献   

16.
Serum proteins [molecular weight (MW) > 10,000] are essential for increased insulin-stimulated glucose transport after in vitro muscle contractions. We investigated the role of the kallikrein-kininogen system, including bradykinin, which is derived from kallikrein (MW > 10,000)-catalyzed degradation of serum protein kininogen (MW > 10,000), on this contraction effect. In vitro electrical stimulation of rat epitrochlearis muscles was performed in 1) rat serum +/- kallikrein inhibitors; 2) human plasma (normal or kallikrein-deficient); 3) rat serum +/- bradykinin receptor-2 inhibitors; or 4) serum-free buffer +/- bradykinin. 3-O-methylglucose transport (3-MGT) was measured 3.5 h later. Serum +/- kallikrein inhibitors tended (P = 0.08) to diminish postcontraction insulin-stimulated 3-MGT. Contractions in normal plasma enhanced insulin-stimulated 3-MGT vs. controls, but contractions in kallikrein-deficient plasma did not. Supplementing rat serum with bradykinin receptor antagonist HOE-140 during contraction did not alter insulin-stimulated 3-MGT. Muscles stimulated to contract in serum-free buffer plus bradykinin did not have enhanced insulin-stimulated 3-MGT. Bradykinin was insufficient for postcontraction-enhanced insulin sensitivity. However, results with kallikrein inhibitors and kallikrein-deficient plasma suggest kallikrein plays a role in this improved insulin action.  相似文献   

17.
18.
The steady-state residual glucose concentrations in aerobic chemostat cultures of Saccharomyces cerevisiae ATCC 4126, grown in a complex medium, increased sharply in the respiro-fermentative region, suggesting a large increase in the apparent ks value. By contrast, strain CBS 8066 exhibited much lower steady-state residual glucose concentrations in this region. Glucose transport assays were conducted with these strains to determine the relationship between transport kinetics and sugar assimilation. With strain CBS 8066, a high-affinity glucose uptake system was evident up to a dilution rate of 0.41 h–1, with a low-affinity uptake system and high residual glucose levels only evident at the higher dilution rates. With strain ATCC 4126, the high-affinity uptake system was present up to a dilution rate of about 0.38 h–1, but a low-affinity uptake system was discerned already from a dilution rate of 0.27 h–1, which coincided with the sharp increase in the residual glucose concentration. Neither of the above yeast strains had an absolute vitamin requirement for aerobic growth. Nevertheless, in the same medium supplemented with vitamins, no low-affinity uptake system was evident in cells of strain ATCC 4126 even at high dilution rates and the steady-state residual glucose concentration was much lower. The shift in the relative proportions of the high and low-affinity uptake systems of strain ATCC 4126, which might have been mediated by an inositol deficiency through its effect on the cell membrane, may offer an explanation for the unusually high steady-state residual glucose concentrations observed at dilution rates above 52% of the wash-out dilution rate.  相似文献   

19.
20.
Amino acids were found to play an integral role in modulating glucose-induced desensitization of the glucose transport system (GTS). When adipocytes were treated for 6 h in a defined buffer containing 25 ng/ml insulin, 20 mM glucose, plus the 15 amino acids found in Dulbecco's modified Eagle's medium, we observed marked desensitization of the GTS, manifested by a 60% decrease in maximal insulin responsiveness (MIR) and a 2.5-fold reduction in insulin sensitivity. In contrast, little or no desensitization was seen under similar conditions in the absence of amino acids. The ability of amino acids to co-regulate the GTS appears to be directly attributable to amino acids per se since desensitization was still observed in cycloheximide-treated cells. Moreover, the action of amino acids is specific to glucose-induced desensitization since amino acids were not required for dexamethasone-induced desensitization of the GTS. Of the 15 amino acids contained in Dulbecco's modified Eagle's medium, one group of 8 amino acids was fully effective in mediating loss of both MIR and insulin sensitivity, whereas the remaining 7 amino acids were ineffective. Interestingly, this second group selectively retained the ability to modulate loss of insulin sensitivity. Upon screening the individual amino acids, we found that L-glutamine (but not D-glutamine) was as effective as total amino acids in modulating loss of MIR, whereas glycine and threonine were only partially effective. Since isoleucine and serine enhanced both MIR and insulin sensitivity of the protein synthesis system without influencing the GTS, it appears that amino acids can influence several insulin effector systems with notable differences in rapidity of action, direction of regulation, and specificity of amino acids. From these studies we conclude: 1) desensitization of the GTS requires three components--glucose, insulin, and selective amino acids; 2) insulin resistance of the GTS can be induced through several mechanisms, but only glucose-induced desensitization requires amino acids; 3) glucose-induced desensitization is mediated primarily by metabolic events independent of de novo protein synthesis; and 4) glutamine is the primary amino acid modulating glucose-induced loss of MIR. Overall, these studies reveal that amino acids play an important role in modulating insulin action at the cellular level and provide new insights into the metabolic mechanisms mediating insulin resistance of the glucose transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号