首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Biocalorimetric experiments were performed to investigate the aerobic growth of Pseudomonas aeruginosa, isolated from tannery saline wastewater. Growth factors (pH, Inoculum size, carbon source, temperature, aeration rate, and agitation rate) were optimized in shaker and calorimeter based on the growth of P. aeruginosa and heat generation rates. A limiting value of 0.2% glucose concentration was found to be optimum for the growth of P. aeruginosa in a complex growth medium, and the heat flux (qr) profiles resulting from the metabolic activity of P. aeruginosa further confirmed this observation. The bacterial growth profile was found to correlate well with the metabolic heat generated. Heat-yield values were calculated for both glucose consumption and the growth of P. aeruginosa from the calorimetric results. Metabolic shifts in substrate uptake from glucose to peptone present in growth medium was observed by the variations in heat-flux profile. The calorimetric data presented in this study should be useful in understanding the behavior of the isolated bacterial strain in degrading complex and mixed substrates commonly observed in tannery saline waste stream, and further to extend the results for scale-up studies.  相似文献   

2.
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75–90% of the initial TOC (total organic carbon) was mineralized, 5–20% remained as DOC (dissolved organic carbon) and 3–10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0–19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with eitherArthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.  相似文献   

3.
Biocalorimetry has proved to be an efficient tool for studying the energetics involved in several biochemical reactions. In this study, biocalorimetry was employed to simultaneously analyze biokinetics and bioenergetics involved during cultivation of a salt tolerant Pseudomonas aeruginosa for the production of alkaline protease. Batch experiments were performed in a bench scale biocalorimeter for alkaline protease production by P. aeruginosa using optimized process conditions. Tessier’s double substrate growth model was found to provide a good fit for the growth of P. aeruginosa in the biocalorimeter, and the biokinetic parameters were estimated. The heat flow profile resulting from metabolic activity of P. aeruginosa was shown to accurately depict both the kinetics of cell growth and protease production. Biokinetic and bioenergetic analysis on the growth of P. aeruginosa revealed that peptone is preferentially used as the substrate for its intracellular activities and glycerol acts as an energy source for its growth metabolism.  相似文献   

4.
Biocalorimetric experiments were performed to investigate the aerobic growth of Pseudomonas aeruginosa, isolated from tannery saline wastewater. Growth factors (pH, Inoculum size, carbon source, temperature, aeration rate, and agitation rate) were optimized in shaker and calorimeter based on the growth of P. aeruginosa and heat generation rates. A limiting value of 0.2% glucose concentration was found to be optimum for the growth of P. aeruginosa in a complex growth medium, and the heat flux (q(r)) profiles resulting from the metabolic activity of P. aeruginosa further confirmed this observation. The bacterial growth profile was found to correlate well with the metabolic heat generated. Heat-yield values were calculated for both glucose consumption and the growth of P. aeruginosa from the calorimetric results. Metabolic shifts in substrate uptake from glucose to peptone present in growth medium was observed by the variations in heat-flux profile. The calorimetric data presented in this study should be useful in understanding the behavior of the isolated bacterial strain in degrading complex and mixed substrates commonly observed in tannery saline waste stream, and further to extend the results for scale-up studies.  相似文献   

5.
A number of microalgae species are efficient in removing toxicants from wastewater. Many of these potential species are a promising, eco-friendly, and sustainable option for tertiary wastewater treatment with a possible advantage of improving the economics of microalgae cultivation for biofuel production. The present study deals with the phycoremediation of tannery wastewater (TWW) using Scenedesmus sp. isolated from a local habitat. The test species was grown in TWW under laboratory conditions and harvested on the 12th day. The results revealed that the algal biomass during the growth period not only reduced the pollution load of heavy metals (Cr-81.2–96%, Cu-73.2–98%, Pb-75–98% and Zn-65–98%) but also the nutrients (NO3 >44.3% and PO4 >95%). Fourier Transform Infrared (FTIR) spectrums of Scenedesmus sp. biomass revealed the involvement of hydroxyl amino, carboxylic and carbonyl groups. The scanning electron micrograph (SEM) and Energy Dispersive X-ray Spectroscopic analysis (EDS) revealed the surface texture, morphology and element distribution of the biosorbent. Furthermore, the wastewater generated during wet-blue tanning process can support dense population of Scenedesmus sp., making it a potential growth medium for biomass production of the test alga for phycoremediation of toxicants in tannery wastewaters.  相似文献   

6.
Pseudomonas aeruginosa, isolated from soil near tannery effluent was able to degrade 8-anilino-1-naphthalenesulfonic acid (ANSA), a sulfonated aromatic amine. The organism degraded this amine up to a concentration of 1,200 mg l−1 using glucose and ammonium nitrate as carbon and nitrogen sources respectively. The degradation started when the organism reached its late exponential growth phase. Salicylic acid and β-ketoadipic acid were identified as intermediate compounds using HPLC and GC–MS and provide evidence for ortho pathway reactions. Further proof for the pathway is obtained from the dioxygenase activity of the strain growing exponentially in medium with ANSA and glucose.  相似文献   

7.
The objective of this research work is to study the effect of physical and chemical mutagenesis on biological treatment of tannery saline wastewater (soak liquor) employing halotolerant bacterial strains. Four halotolerant bacterial strains isolated from saline sources were used. The strains were identified as Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Staphylococcus aureus, respectively. The isolates were found to grow well in medium containing 0–10% NaCl. At high saline concentration (>5%), the identified strains and their mixed consortia showed a low degrading efficiency of soak liquor (35–45%). UV light and nitrous acid mutagenesis were performed over the strains and the mutated strains were employed for degradation of soak liquor at high salinity level (6% by wt). Comparison of Chemical Oxygen Demand (COD) removal rates for both pure mutant isolates and mixed mutated consortia showed that nitrous acid mutagenesis resulted in degradation of 71% COD removal. Ultraviolet (UV) mutagenesis has no effect on degradation effectiveness. Biomass sludge (Mixed Liquor Volatile Suspended Solids) growth was also found to be high in nitrous acid treated strains.  相似文献   

8.
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillus thuringiensis strain Israelis as well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.  相似文献   

9.
A new green microalgal species was isolated, identified and investigated for its biomass production and nutrient removal efficiency in dairy and winery wastewater in this study. The 18S rRNA-based phylogenetic analysis revealed that this new strain is a Diplosphaera sp. and was designated strain MM1. The growth of this strain was evaluated in different diluted dairy and winery wastewaters. The highest algal biomass production (up to 2.3 g L?1) was obtained in dairy wastewater (D3; dairy wastewater 1:2 deionised water) after 14 days of culture. However, for winery wastewater, the highest algal biomass production (up to 1.46 g L?1) was obtained in wastewater combination W2 (winery wastewater 1:1 deionised water) after 14 days of culture. Turbid dairy wastewater with high concentration of nitrogen and phosphorous slowed down the initial growth of the alga. However, at the end of day 14, biomass production was nearly twofold higher than that of winery wastewater. The findings from both types of wastewater suggest that Diplosphaera sp. MM1 has potential for its application in generating biomass with simultaneous remediation of nutrient-rich wastewater.  相似文献   

10.
The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted effluent caused a complete germination inhibition. Constructed wetlands (CWs) with Arundo donax or Sarcocornia fruticosa were envisaged to further polish this wastewater. Selection of plant species to use in CWs for industrial wastewater treatment is an important issue, since for a successful establishment they have to tolerate the often harsh wastewater composition. For that, the effects of this wastewater on the growth of Arundo and Sarcocornia were assessed in pot assays. Plants were subject to different wastewater contents (0/50/100%), and both were resilient to the imposed conditions. Arundo had higher growth rates and biomass than Sarcocornia and may therefore be the preferred species for use in CWs treating tannery wastewater. CWs planted with the above mentioned plants significantly decreased the toxicity of the wastewater, as effluent from the CWs outlet stimulated the growth of Trifolium at concentrations <50%, and seed germination and growth even occurred in undiluted effluent.  相似文献   

11.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   

12.
Microcystis aeruginosa and Aulacoseira distans strains were grown in batch cultures to investigate the consequences of N/P ratio on the growth of these species and on their abilities to take up nitrogen and phosphorus. N/P ratio did not influence the growth rates, which were similar under all the experimental conditions. However, exponential growth lasted longer in Microcystis than in Aulacoseira, especially under low N/P ratio conditions. Distinct patterns of nutrient uptake for Aulacoseira and Microcystis were observed. N-uptake was higher in Microcystis, but not influenced by N/P ratio. However, the amount absorbed was proportional to the concentration in the culture medium for both strains studied. Although Microcystis showed lower uptake of N per biomass unit, a greater yield of Microcystis growth relative to the diatom was observed. This could have resulted from its ability to produce biomass using less nitrogen per unit of biomass. A variation of N/P ratio in the culture medium during the growth of both species was observed. This owed to the uptake of nutrients, with Microcystis showing greater potential than Aulacoseira to influence the N/P ratio. Thus, in contrast to what has been stated in the literature, our results indicated that a low N/P ratio could be a consequence of the capacities and rates of cyanobacterial uptake of nitrogen and phosphorus.  相似文献   

13.
Kinetic investigations on growth parameters of nitrifying and COD oxidizing bacteria were carried out with recourse to a three stage reciprocating jet bioreactor system using real life wastewater. The system employed in this investigation essentially consisted of separate aerobic oxidation stage along with nitrification stage and anaerobic denitrification stage with facility for biomass recirculation whenever necessary. Steady-state COD oxidation reactor performance was assessed for various values of residence time. Yield coefficient and decay coefficient of COD oxidizing biomass were obtained as 0.3329 kg BM/kg COD and 0.0032 (1/h) respectively.It was observed that COD oxidizing bacteria co-existed with nitrifying bacteria during nitrification process due to the nature of wastewater used. Steady-state nitrification reactor performance was also assessed for various residence time values. Exact concentration of nitrifying and COD oxidizing biomass in the nitrification reactor was then estimated with the help of kinetic growth parameters of COD oxidizing biomass and extent of COD oxidation achieved in nitrification reactor. This further enabled evaluation of corrected kinetic growth parameters estimated as 0.4272 kg BM/kg NH 4 + -N and 0.00626 (1/h) for nitrifier biomass yield coefficient and decay coefficient respectively.  相似文献   

14.
Two plant growth promoting rhizobacteria––Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 were studied for integrated nutrient management to obtain improved yield of Brassica juncea. Low concentrations of urea and diammonium phosphate (DAP) stimulated the growth of both S. meliloti RMP1 and P. aeruginosa GRC2. 1 M of urea and 0.35 M of DAP was found lethal for RMP1, while 1.3 M and 0.37 M concentrations of urea and DAP proved to be toxic for GRC2. Lc50 was observed as 0.49 M of urea and 0.15 M of DAP for RMP1, and 0.66 M urea and 0.18 M of DAP for GRC2. Urea and DAP adaptive variants of RMP1 and GRC2 was isolated. Adaptive bacterial variants had better growth rates at sub-lethal (Lc50) concentrations of urea and DAP as compared to non-adaptive variants. They also retained plant growth promoting attributes similar to non adaptive variants. GRC2 and RMP1 did not affect the growth of each other and were chemotactically active for DAP, urea as well as root exudates of B. juncea. Both the isolates colonized well in the rhizosphere of B. juncea, as their populations were recorded ≈5 log10 cfu g−1 after 120 days. Interestingly, the colonization ability was found even better when both strains were co-inoculated, as their population was recorded in the range of ≈6 log10 cfu g−1 after 120 days. In field trials, application of RMP1 and GRC2 resulted in significant increase in biomass and yield of B. juncea as compared to control. However, yield was better with application of half dose and full dose of recommended fertilizers. Interestingly, the biomass as well as yield improved further when both isolates were applied together along with half dose of recommended fertilizers.  相似文献   

15.
Pseudomonas putida is rapidly becoming a microbial cell platform for biotechnological applications. In order to understand genotype‐phenotype relationships genome scale models represent helpful tools. However, the validation of in silico predictions of genome scale models is a task that is rarely performed. In this study the theoretical biomass yields of Pseudomonas putida KT2440 were estimated for 57 different carbon sources based on a genome scale stoichiometric model applying flux balance analysis. The batch growth of P. putida KT2440 with six individual carbon sources covering the range of maximal to minimal in silico biomass yields (acetate, glycerol, citrate, succinate, malate and methanol, respectively) was studied in a defined mineral medium in a fully controlled stirred‐tank bioreactor on a 3 L scale. The highest growth rate of P. putida KT2440 was measured with succinate as carbon source (0.51 h?1). Among the 57 carbon sources tested, glycerol resulted in the highest estimated biomass yield (0.61 molCBiomass molC?1Glycerol) which was experimentally confirmed. The comparison of experimental determined biomass yields with a modified version of the model iJP815 showed deviations of only up to 10%. The experimental data generated in this study can also be used in future studies to further improve the genome scale models of P. putida KT2440. Improved models will then help to gain deeper insights in genotype‐phenotype relationships.  相似文献   

16.
The use of constructed wetlands (CWs) is a promising approach for the remediation of wastewater. The present study aims to develop a plant–bacteria system within CWs for the efficient remediation of tannery effluent. In a vertical-flow CW vegetated with Leptochloa fusca (Kallar grass), a consortium of three different endophytic bacteria, Pantoea stewartii ASI11, Microbacterium arborescens HU33, and Enterobacter sp. HU38, was used for bioaugmentation. CWs vegetated with only L. fusca had the potential to remediate tannery effluent, but augmentation with endophytic bacteria enhanced the growth of L. fusca while aiding in the removal of both organic and inorganic pollutants from the tannery effluent. Moreover, the bacterial augmentation decreased toxicity in the effluent as well. A higher number of chromium (Cr)-resistant bacteria were isolated from the rhizosphere and endosphere of L. fusca inoculated with the endophytes than from uninoculated plants. Due to promising bioremediation and detoxification potential of L. fusca, it is reported for the first time as a potential candidate to develop effective CWs for the remediation of polluted effluents in combination with pollutant-degrading endophytic bacteria.  相似文献   

17.
Wastewaters from tannery industry are complex in composition and providing adequate treatment can be difficult. Constructed wetlands (CW) are regarded as an alternative treatment to the conventional biological systems, as a developing cost-effective and environmentally friendly phytoremediation technology. The present review compiles and integrates information on CWs technology for the needs of the tannery sector. The following issues arise as crucial for the implementation of such systems, namely i) an accurate wastewater characterization and an effective pretreatment before reaching the CW, ii) choosing the plants species better adapted to the imposed conditions, iii) substrate selection and iv) range of organic loadings applied. The examples practiced in Portugal give indication that horizontal subsurface flow systems, with expanded clay media, are a suitable option to be considered when dealing with high organic loading tannery wastewater (up to c.a. 3800 kgCODha?1d?1), being resilient to a wide range of hydraulic variations. Plants such as Phragmites and Typha have shown to be adequate for tannery wastewater depuration, with Arundo donax proving resilient to high salinity wastewaters. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main secondary or tertiary treatment stage.  相似文献   

18.
Fungal cultivation in a biological real-time reaction calorimeter (BioRTCal) is arduous due to the heterogeneous nature of the system and difficulty in optimizing the process variables. The aim of this investigation is to monitor the growth of fungi Aspergillus tamarii MTCC 5152 in a calorimeter. Experiments carried out with a spore concentration of 105 spores/mL indicate that the growth based on biomass and heat generation profiles was comparable to those obtained hitherto. Heat yield due to biomass growth, substrate uptake, and oxygen uptake rate was estimated from calorimetric experiments. The results would be useful in fermenter design and scale-up. Heat of combustion of fungal biomass was determined experimentally and compared to the four models reported so far. The substrate concentration had significant effects on pellet formation with variation in pellet porosity and apparent density. Metabolic heat generation is an online process variable portraying the instantaneous activity of monitoring fungal growth and BioRTCal is employed to measure the exothermic heat in a noninvasive way.  相似文献   

19.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

20.
Two bacterial species (isolates N and O) were isolated from a paddy soil microcosm that had been artificially contaminated with diesel oil to which extrinsic Pseudomonas aeruginosa strain WatG, had been added exogenously. One bacterial species (isolate J) was isolated from a similar soil microcosm that had been biostimulated with Luria–Bertani (LB) medium. Isolates N and O, which were tentatively identified as Stenotrophomonas sp. and Ochromonas sp., respectively, by sequencing of their 16 S rRNA genes had no ability to degrade diesel oil on their own in any liquid medium. When each strain was cocultivated with P. aeruginosa strain WatG in liquid mineral salts medium (MSM) containing 1% diesel oil, isolate N enhanced the degradation of diesel oil by P. aeruginosa strain WatG, but isolate O inhibited it. In contrast, isolate J, which was tentatively identified as a Rhodococcus sp., degraded diesel oil contained not only in liquid LB and MSM, but also in paddy soil microcosms supplemented with LB medium. The bioaugmentation capacity of isolate J in soil microcosms contaminated with diesel oil was much higher than that of P. aeruginosa strain WatG. The possibility of using isolate J for autochthonous bioaugmentation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号