首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Summary To obtain specific immunological probes for investigation of the cellular and molecular aspects of the subcommissural organ (SCO), we produced monoclonal antibodies directed against extracts from the bovine SCO. An hybridoma cell line (C1A8B8) was isolated by screening the culture media by means of the immunofluorescence method. This clone produces an IgG1 that recognizes the ventricular secretory material of the SCO including Reissner's fiber. A competition test using C1B8A8 immunoglobulin and lectins (concanavalin A and wheat-germ agglutinin) was applied to demonstrate that both the immature and mature forms of the glycoprotein were recognized. This antibody will offer a good tool for immunocytochemical localization and immunoaffinity purification of the antigen and for isolation of cDNA clones encoding it.  相似文献   

2.
Summary By means of light-microscopic immunocyto-chemistry two polyclonal antibodies (AFRU, ASO; see p. 470) directed against secretory glycoproteins of the subcom-missural organ were shown to cross-react with cells in the pineal organ of lamprey larvae, coho salmon, a toad, two species of lizards, domestic fowl, albino rat and bovine (taxonomic details, see below). The AFRU-immunoreactive cells were identified as pinealocytes of the receptor line (pineal photoreceptors, modified photoreceptors or classical pinealocytes, respectively) either due to their characteristic structural features or by combining AFRU-immunoreaction with S-antigen and opsin immunocytochemistry in the same or adjacent sections. Depending on the species, AFRU- or ASO-immunoreactions were found in the entire perikaryon, inner segments, perinuclear area, and in basal processes facing capillaries or the basal lamina. In most cases, only certain populations of pinealocytes were immunolabeled; these cells were arranged in a peculiar topographical pattern. In lamprey larvae, immunoreactive pinealocytes were observed only in the pineal organ, but not in the parapineal organ. In coho salmon, the immunoreaction occurred in S-antigen-positive pinealocytes of the pineal end-vesicle, but was absent from S-antigen-immunoreactive pinealocytes of the stalk region. In the rat, AFRU-immunoreaction was restricted to S-antigen-immunoreactive pinealocytes found in the deep portion of the pineal organ and the habenular region. These findings support the concept that several types of pinealocytes exist, which differ in their molecular, biochemical and functional features. They also indicate the possibility that the AFRU- and ASO-immunoreactive material found in certain pinealocytes might represent a proteinaceous or peptidic compound, which is synthesized and released from a specialized type of pinealocyte in a hormone-like fashion. This cell type may share functional characteristics with peptidergic neurons or paraneurons.Supported by Grant I 38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, to E.M.R. and A.O.; Grant S-85-39 from the Direccion de Investigaciones, Universidad Austral de Chile, to E.M.R.; Grant 187 from FONDECYT, Chile, to C.R.Y.; and Grant Ko 758/3-1 from the Deutsche Forschungsgemeinschaft, Federal Republic of Germany, to H.W.K.  相似文献   

3.
Summary It has recently been shown that the biological activity of the second generation kinin B1 receptor selective antagonist, desArg10 HOE 140, can be improved by specific amino acid substitutions. Starting from this observation, we undertook a systematic structure-activity relationship study of this antagonist, based on the alanine-scan technique, in order to obtain useful information for the rational design of more analogues. Our data indicate that the sequence of desArg10 HOE 140 does not tolerate the replacement by Ala of most of its residues, with the exception of Ser in position 7 and, to a lesser extent, D-Arg in position 1 and Hyp in position 4. The most critical residues appear to be Pro in position 3 and the C-terminal dipeptide Dtic-Oic; Ala replacement at these positions resultes in a total loss of activity. Moreover, replacement by Ala of Gly in position 5 reverts the activity of desArg10 HOE 140 to that of an agonist.  相似文献   

4.
Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1.  相似文献   

5.
We have monitored the ligand binding of the bovine hippocampal 5-HT1A receptor following treatment with the sterol-binding antifungal antibiotic nystatin. Nystatin considerably inhibits the specific binding of the antagonist to 5-HT1A receptors in a concentration-dependent manner. However, the specific agonist binding does not show significant changes. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed a substantial decrease in the membrane order in the interior of the bilayer. Experiments with cholesterol-depleted membranes indicate that the action of nystatin is mediated through membrane cholesterol. These results represent the first report on the effect of a cholesterol-perturbing agent on the ligand-binding activity of this important neurotransmitter receptor.  相似文献   

6.
Yu W  Yuan B  Deng X  He L  Youyi Z  Qide H 《Analytical biochemistry》2005,339(2):198-205
As a novel bioaffinity chromatographic technique, cell membrane chromatography (CMC) originated in 1996. The cell membrane stationary phase (CMSP) consists of porous silica coated with active cell membranes. By immersing silica into a suspension of cell membranes, the whole surface of silica was covered by the cell membranes. The present study repeatedly investigated the interaction between ligands and receptors by employing the system of CMC and especially evaluated the accuracy and feasibility of the CMC model in the study of subtype receptors. The cDNA encoding alpha1A or alpha1B adrenergic receptors (ARs) was transfected into human embryonic kidney 293 (HEK293) cell lines; cell lines stably overexpressing subtype receptors were obtained. HEK293 alpha1A or HEK293 alpha1B ARs CMSP were prepared by immobilizing relevant cell membranes on silica. In the described chromatography-based CMSP, the retention times of nine alpha1 adrenoceptor ligands and calculated capacity factors, as chromatographic parameters, were recorded carefully. These results showed a good correlation with the affinity of the same compounds for the corresponding cloned alpha1 adrenoceptor subtype. The rank order of capacity factors was consistent with the affinity rank order obtained from radioligand binding assays. The immobilized subtype-selective CMSP was stable and reproducible. The study demonstrates that the HEK293 alpha1A and HEK293 alpha1B CMSP can be utilized for initial screening of drug candidates.  相似文献   

7.
1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions.2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors.3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed.4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides.5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.  相似文献   

8.
The human monoclonal antibody AE6F4 specifically reacts with human lung cancer tissues but does not with normal tissues. This monoclonal antibody recognizes a cytosolic 31 kDa antigen in the cancer cells. In a previous study, we elucidated that the 31 kDa antigen belonged to a family of proteins collectively designated as 14-3-3 proteins, which were known as protein kinase-dependent activators of tyrosine/trytophan hydroxylases, or protein kinase C inhibitor proteins. Here we report molecular cloning of the 31 kDa antigen from the human lung adenocarcinoma cell line, A549. Sequencing analysis indicates that the cloned cDNA is identical to that of previously reported human placental cytosolic phospholipase A2 (cPLA2), which is also a member of the 14-3-3 protein family. Western analysis demonstrated that a 31 kDa recombinant cPLA2 expressed in monkey COS cells was recognized by the AE6F4 monoclonal antibody. Binding of the monoclonal antibody to the recombinant cPLA2 was abolished when treated with sodium periodate, suggesting that not only are carbohydrate chains associated with the cPLA2, but they also play a crucial role in antigen recognition by the monoclonal antibody.  相似文献   

9.
The effect of the chain length of the fatty acid residue of the ceramide moiety of ganglioside GM3 on the binding ability of monoclonal antibody M2590, which is specific for the carbohydrate structure of GM3-ganglioside, was examined by means of a direct binding assay on thin layer chromatography plates (TLC immunostaining) and a quantitative enzyme-linked immunosorbent assay (ELISA). Derivatives of GM3 with a long fatty acid chain reacted with the M2590 antibody, but those with a short fatty acid chain showed no reaction in either assay system. These results suggested that the acyl fatty acid moiety of the ganglioside played an important role in the formation or maintenance of the antigenic structure of the carbohydrate moiety of the ganglioside.  相似文献   

10.
The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1AC). Caf1AC is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1AC is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1AC were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.  相似文献   

11.
F(1)F(0) ATP synthase is ectopically expressed on the surface of several cell types, including endothelium and cancer cells. This study uses immunocytochemical detection methods via highly specific monoclonal antibodies to explore the possibility of plasma membrane localization of other mitochondrial proteins using an osteosarcoma cell line in which the location of the mitochondrial reticulum can be clearly traced by green fluorescent protein tagging of the organelle. We found that subunits of three of the four respiratory chain complexes were present on the surface of these cells. Additionally, we show for the first time that F(0) subunits d and OSCP of the ATP synthase are ectopically expressed. In all cases the OXPHOS proteins show a punctate distribution, consistent with data from proteome analysis of isolated lipid rafts that place the various mitochondrial proteins in plasma membrane microdomains. We also examined the cell surface for marker membrane proteins from several other intracellular organelles including ER, golgi and nuclear envelope. They were not found on the surface of the osteosarcoma cells. We conclude that mitochondrial membrane proteins are ectopically expressed, but not proteins from other cellular organelles. A specific mechanism by which the mitochondrion and plasma membrane fuse to deliver organellar proteins is suggested.  相似文献   

12.
The nucleotide sequence of the unique neutralizing monoclonal antibody D32.10 raised against a conserved conformational epitope shared between E1 and E2 on the serum-derived hepatitis C virus (HCV) envelope was determined. Subsequently, the recombinant single-chain Fv fragment (scFv) was cloned and expressed in Escherichia coli, and its molecular characterization was assessed using multi-angle laser light scattering. The scFv mimicked the antibody in binding to the native serum-derived HCV particles from patients, as well as to envelope E1E2 complexes and E1, E2 glycoproteins carrying the viral epitope. The scFv D32.10 competed with the parental IgG for binding to antigen, and therefore could be a promising candidate for therapeutics and diagnostics.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号