首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this paper we propose that the reduction of the bacteriochlorophyl dimer cation (P+) by cytochrome c in the photosynthetic bacteria Rps. viridis and Chromatium vinosum proceeds via two parallel electron transfer (ET) processes from two distinct cytochrome c molecules. The dominating ET process at high temperatures involves the activated oxidation of the high-potential cytochrome c at closest proximity to P, while the dominating low-temperature process involves activationless ET from a low-potential cytochrome c, which is further away from P. The available data for the effects of blocking the low-potential cytochrome c on ET dynamics are consistent with this model, which results in reasonable nuclear reorganization and electronic coupling parameters for the parallel cytochrome oxidation processes. The lack of universality in the cytochrome oxidation in reaction centres of various bacteria is emphasized.  相似文献   

2.
The oxygen reaction of the fully reduced respiratory chain in membranes from oxygen-limited Escherichia coli was studied at sub-zero temperatures using EPR spectroscopy. Laser photolysis of CO-liganded cytochrome oxidase d precedes oxidation of at least 2 kinetically separable high-spin cytochromes. At −120 to −100°C, a rhombic signal appears, attributable to cytochrome d, followed at above −100°C, by appearance of a second, axial signal near g = 6, here assigned to cytochrome(s) b, and changes in the redox state of iron-sulphur clusters. The data kinetically resolve the 2 high-spin signals attributed to the oxidase complex and suggest schemes for electron flow to oxygen.

Cytochrome oxidase Escherichia coli Cytochrome b-d complex Bacterial electron transport Low-temperature technique  相似文献   


3.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


4.
The cytochrome c and hydrogen peroxide-dependent oxidation of m-aminophenol was investigated by electrochemistry and spectrophotometry. The results indicated that the hydroxylated species of m-aminophenol have at least two conjugated substituted groups on the ring system (most possibly, its oxidized form 2-hydroxy-4-iminoquinone), and that the degradation of cytochrome c by hydrogen peroxide can also be prevented in the presence of m-aminophenol. The hydroxyl radical scavengers, mannitol and sodium benzoate, almost completely eliminate the hydroxylation of m-aminophenol. But oxo-heme species scavenger, uric acid, does not inhibit the hydroxylation. Combining the results of mass spectrum, nuclear magnetic resonance and element analysis with that of spectrophotometry, electrochemistry and chemical scavengers, it is suggested that cytochrome c may act as a peroxidase, which facilitates the hydroxylation and subsequent dimerization of m-aminophenol.  相似文献   

5.
D. F. Wilson  Britton Chance 《BBA》1967,131(3):421-430
The azide inhibition of the succinate oxidase activity of rat-liver mitochondria is specific for active (State 3) respiration with no observable inhibition of resting (State 4) respiration. In the range of azide concentrations which inhibit State 3 to rates less than those of State 4, a negative control of respiration by ADP and inorganic phosphate is observed. The inhibition is specific for a site between cytochromes a and a3, causing a crossover between these two cytochromes with cytochrome a becoming reduced and cytochrome a3 remaining highly oxidized. Trapped steady-state difference spectra at liquid nitrogen temperatures show that the reduced cytochrome a in the azide-inhibited system has an band at 596 mμ, 6 m μ displaced from its usual position at 602 mμ.

The azide inhibition is released by uncouplers of oxidative phosphorylation such that the uncoupled respiration requires up to ten times as much azide as does coupled (State 3) respiration for comparable inhibition. The release of inhibition by uncouplers occurs with no change in the steady-state concentration of reduced cytochrome a596 and the increased respiration is attributed to an increased rate of oxidation of the cytochrome a596. This cytochrome is postulated to be either an intermediate in electron transport and energy conservation reactions or an azide compound of such an intermediate.  相似文献   


6.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


7.
Electrochemical sensors based on immobilised cytochrome c or superoxide dismutase for the measurement of superoxide radical production by stimulated neutrophils are described. Cytochrome c was immobilised covalently at a surface-modified gold electrode and by passive adsorption to novel platinised activated carbon electrodes (PACE). The reoxidation of cytochrome c at the electrode surface upon reduction by superoxide was monitored using both xanthine/xanthine oxidase and stimulated neutrophils as sources of the free radical. In addition, bovine Cu/Zn superoxide dismutase was immobilised to PACE by passive adsorption and superoxide, generated by xanthine/xanthine oxidase, detected by oxidation of hydrogen peroxide produced by the enzymic dismutation of the superoxide radical. A biopsy needle probe electrode based on cytochrome c immobilised at PACE and suitable for continuous monitoring of free radical production was constructed and characterised.  相似文献   

8.
《BBA》1972,275(3):485-490
Formation of a membrane potential in two types of liposomes, one inlayed with cytochrome c + cytochrome oxidase, and another, with oligomycin-sensitive ATPase, has been demonstrated. To detect a membrane potential, phenyl dicarbaundecaborane (PCB), a penetrating anion probe, was used.

The first type of liposome was reconstituted from a solution of purified cytochrome oxidase, mitochondrial phospholipids and cytochrome c, the latter being enclosed inside liposomes. Cytochrome c bound to the outer surface of the liposome membrane was removed by washing with NaCl. Such liposomes catalyzed oxidation of ascorbate by oxygen in the presence of phenazine methosulfate or N,N,N′,N′-tetramethyl-p-phenylenediamine. The oxidation was found to support the PCB uptake by liposomes. The PCB response was prevented and reversed by cyanide, protonophorous uncouplers and external cytochrome c.

Liposomes of the second type were prepared from a solution of mitochondrial phospholipids, coupling factors F1and Fc, and the hydrophobic proteins of the oligomycin-sensitive ATPase. These liposomes catalyzed ATP hydrolysis coupled with the PCB uptake. The latter effect was prevented and reversed by oligomycin and uncouplers.

The conclusion is made that membrane potential can be independently formed by enzymic reactions of two different kinds: (1) redox (e.g. cytochrome c oxidase) and (2) hydrolytic (ATPase).  相似文献   


9.
The spectroscopic measurements of the slow phase of the electrochromic effect and the redox kinetics of cytochrome b6 and f provide strong evidence that a Q cycle operates in chloroplasts under conditions of non-cyclic electron transport. The effect of HQNO and DBMIB on the extent and kinetics of these light-induced changes places several constraints on the mechanism of quinol oxidation by the cyt. b/f—FeS complex: for each electron removed from the cyt. b/f—FeS complex by P700 an additional charge is transferred across the membrane; the cyclic pathway of electrons involved in quinol oxidation by the cyt. b/f—FeS complex includes at least one of the two b6 cytochromes; the electrogenic step associated with quinol oxidation is subsequent to the reduction of at least one cytochrome b6 quinol oxidation may proceed in a stepwise manner, with the first electron going to cytochrome b6 and the second electron going to the FeS center and cytochrome f.  相似文献   

10.
Myxothiazol inhibited oxygen consumption of beef heart mitochondria in the presence and absence of 2,4-dinitrophenol, as well as NADH oxidation by submitochondrial particles. The doses required for 50% inhibition were 0.58 mol myxothiazol/mol cytochrome b for oxygen consumption of beef heart mitochondria, and 0.45 mol/mol cytochrome b for NADH oxidation by submitochondrial particles. Difference spectra with beef heart mitochondria and with cell suspensions of Saccharomyces cerevisiae revealed that myxothiazol blocked the electron transport within the cytochrome b-c1 segment of the respiratory chain. Myxothiazol induced a spectral change in cytochrome b which was different from and independent of the shift induced by antimycin. Myxothiazol did not give the extra reduction of cytochrome b typical for antimycin. Studies on the effect of mixtures of myxothiazol and antimycin on the inhibition of NADH oxidation indicated that the binding sites of the two inhibitors are not identical.  相似文献   

11.
H.F. Kauffman  B.F. Van Gelder 《BBA》1973,314(3):276-283
1. Cyanide causes a slow disappearance of the oxidized band (648 nm) of cytochrome d in particles of Azotobacter vinelandii and inhibits the appearance of the reduced band (631 nm). No effect of cyanide is found on the reduced band of cytochrome d.

2. The kinetics of the disappearance of the 648-nm band of cytochrome d with excess cyanide deviates from first-order kinetics at lower temperatures (22 °C) indicating that at least two conformations of the enzyme are involved. At higher temperatures (32 °C) the observed kinetics of the cyanide reaction are first order with a kon = 0.7 M−1·s−1 and with an estimated koff of approximately 5·10−5 s−1.

3. The value of the koff (7·10−4−14·10−4 s−1 at 32 °C) determined from the rate of reduction of cyanocytochrome d by Na2S2O4 or NADH is one order of magnitude larger than the koff value found when the enzyme is in its oxidized state.

4. No effect of cyanide is found on the spectrum of cytochrome a1.  相似文献   


12.
Chemotherapeutic drugs that inhibit the synthesis of DNA precursor thymidine triphosphate cause apoptosis, although the mechanism underlying this process remains rather unknown. Here, we describe thymineless death of human myeloid leukemia U937 cells treated with the thymidylate-synthase inhibitor 5-fluoro-2-deoxyuridine (FUdR). This apoptotic process was shown to be independent of p53, reactive oxygen species generation and CD95 activation. Caspases were activated downstream of cytochrome c but upstream of mitochondrial depolarization. Furthermore, FUdR-induced apoptosis required the presence of glucose in the culture medium at a step upstream of the release of cytochrome c from mitochondria.  相似文献   

13.
Bacon Ke  Thomas H. Chaney  Dan W. Reed 《BBA》1970,216(2):373-383
1. By means of Q-switched ruby-laser flash excitation, the photooxidation of P870 in the reaction-center complex isolated from Rhodopseudomonas spheroides takes place within 1 μsec. The reduction of photooxidized P870 in the dark follows a first-order kinetics, with a pseudo first-order rate constant of 1.85×108 l×mole-1×sec-1 and an activation energy of 6 kcal/mole.

2. Through an electrostatic interaction of the bacteriochlorophyll reaction-center complex and mammalian cytochrome c, an intimate contact between the two components resulted, and a collision-independent electron-transfer with a halftime of 25 μsec can be attained by laser-flash excitation. The absorbance changes at 870 and 550 nm indicated a good stoichiometry of the reaction. The oxidation of the c-type cytochrome in cells of Rps. spheroides (R-26 mutant) has a halftime of 12 μsec.

3. The portion of P870 which recovered rapidly was closely related to the mole ratio of cytochrome/P870. Complete recovery with a halftime of 25 μsec occurred when the cytochrome/P870 ratio was above approx. 10. At cytochrome/P870 ratios lower than 10, only the fraction of the reaction-center complex which have cytochromes bound at the active site can recover with the rapid decay time. Ultrafiltration measurements showed that each particle of the reaction-center complex can bind approx. 24 cytochrome molecules.

4. An electro static interaction is expected simply from the large difference between the isoelectric points of cytochrome c ( 10) and that of the reaction-center complex (4.1 measured by electro-focusing). The electro static interaction was further evidenced by the effects of pH, ionic strength, and by polylysine displacement of binding sites on the coupled oxidation of ferrocytochrome c by P870. From the limiting polylysine concentration giving complete blocking of cytochrome coupling, it was calculated that each reaction-center complex with a particle weight of 6.5×105 contained approx. 500 negative charges.

5. Arrhenius plot of the first-order rate constants vs. the reciprocal absolute temperature yielded an activation energy of 12 kcal/mole for the cytochrome/P870 reaction, which is presumably the energy needed for cytochrome to achieve the most favorable orientation for the rapid electron transfer. Below the freezing temperature of the sample, the cytochrome reaction appeared to be uncoupled. The temperature dependence is consistent with the effect of viscosity on the reaction rate.

6. Double flash excitations spaced 200 μsec apart showed that at a cytochrome/P870 ratio of 24, the first flash caused maximum oxidation, indicating that all the reaction-center particles have at least one cytochrome attached to the active site. However, only 60% of the particles have a second cytochrome closely attached and capable of undergoing the rapid electron transport.  相似文献   


14.
Inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) of the following partial reactions of bacterial photosynthesis has been examined using chromatophores prepared from light-grown Rhodospirillum rubrum: ascorbate- and PMS-induced photophosphorylation, NADH oxidation, NADH oxidatively coupled phosphorylation, NADH-cytochrome c2 reduction, succinate-NAD+ photoreduction, and anaerobic NADH oxidation by fumarate. All of these reactions were found to be inhibited by DCMU (and 3-(p-chlorophenyl)-1,1-dimethylurea) at concentrations in the 0.1 to 1.0 mM range. However, succinate-cytochrome c2 reduction, NADH-2,6-dichlorophenolindophenol reduction and soluble NADH: cytochrome c2 reductase were not inhibited. Based on these findings, it is proposed that DCMU and related compounds inhibit electron transport in chromatophores at a site(s) between NADH and either cytochrome b or a component on the reducing side of cytochrome b.  相似文献   

15.
The influence of temperature on cytochrome c oxidase (CCO) catalytic activity was studied in the temperature range 240-308 K. Temperatures below 273 K required the inclusion of the osmolyte ethylene glycol. For steady-state activity between 278 and 308 K the activation energy was 12 kcal x mol-1; the molecular activity or turnover number was 12 s-1 at 280 K in the absence of ethylene glycol. CCO activity was studied between 240 and 277 K in the presence of ethylene glycol. The activation energy was 30 kcal x mol-1; the molecular activity was 1 s-1 at 280 K. Ethylene glycol inhibits CCO by lowering the activity of water. The rate limitation in electron transfer (ET) was not associated with ET into the CCO as cytochrome a was predominantly reduced in the aerobic steady state. The activity of CCO in flash-induced oxidation experiments was studied in the low temperature range in the presence of ethylene glycol. Flash photolysis of the reduced CO complex in the presence of oxygen resulted in three discernable processes. At 273 K the rate constants were 1500 s-1, 150 s-1 and 30 s-1 and these dropped to 220 s-1, 27 s-1 and 3 s-1 at 240 K. The activation energies were 5 kcal.mol-1, 7 kcal.mol-1, and 8 kcal.mol-1, respectively. The fastest rate we ascribe to the oxidation of cytochrome a3, the intermediate rate to cytochrome a oxidation and the slowest rate to the re-reduction of cytochrome a followed by its oxidation. There are two comparisons that are important: (a). with vs. without ethylene glycol and (b). steady state vs. flash-induced oxidation. When one makes these two comparisons it is clear that the CCO only senses the presence of osmolyte during the reductive portion of the catalytic cycle. In the present work that would mean after a flash-induced oxidation and the start of the next reduction/oxidation cycle.  相似文献   

16.
The cytoplasmic membrane of the H37Ra strain of Mycobacterium tuberculosis has been isolated free of cell wall.

These membrane preparations contain very small quantities of cytochromes c, b and cytochrome oxidase. The cytochrome c is not extracted by any method attempted. The cytochrome b is reducible only by dithionite and is believed not to be involved in the direct transfer of electrons during the oxidation of NADH by these preparations. The NADH oxidase activity of the membrane is inhibited by high concentrations of cyanide and also by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide (HQNO). The cytochrome oxidase of the membrane contains both cytochromes a and a3 and is present in low concentrations relative to cytochrome c. The cytochrome a3 component was identified by characteristic complexes with both CO and cyanide and shows a γ-band absorption maximum at a slightly lower wavelength than the cytochrome oxidase of mammalian mitochondria (442 nm vs. 445 nm). The functional activity of the cytochrome oxidase is indicated by the inhibition of reoxidation of reduced cytochromes c and a in the presence of cyanide.  相似文献   


17.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


18.
We have examined the temperature dependence of the intramolecular electron transfer (ET) between heme b and heme o(3) in CO-mixed valence cytochrome bo(3) (Cbo) from Escherichia coli. Upon photolysis of CO-mixed valence Cbo rapid ET occurs between heme o(3) and heme b with a rate constant of 2.2 x 10(5) s(-1) at room temperature. The corresponding rate of CO recombination is found to be 86 s(-1). From Eyring plots the activation energies for these two processes are found to be 3.4 kcal/mol and 6.7 kcal/mol for the ligand binding and ET reactions, respectively. Using variants of the Marcus equation the reorganization energy (lambda), electronic coupling factor (H(AB)), and the ET distance were found to be 1.4 +/- 0.2 eV, (2 +/- 1) x 10(-3) eV, and 9 +/- 1 A, respectively. These values are quite distinct from the analogous values previously obtained for bovine heart cytochrome c oxidase (CcO) (0.76 eV, 9.9 x 10(-5) eV, 13.2 A). The differences in mechanisms/pathways for heme b/heme o(3) and heme a/heme a(3) ET suggested by the Marcus parameters can be attributed to structural changes at the Cu(B) site upon change in oxidation state as well as differences in electronic coupling pathways between Heme b and heme o(3).  相似文献   

19.
Changes in the oxidation state of the DNA bases, induced by oxidation (ionization) or by reduction (electron capture), have drastic effects on the acidity or basicity, respectively, of the molecules. Since in DNA every base is connected to its complementary base in the other strand, any change of the electric charge status of a base in one DNA strand that accompanies its oxidation or reduction may affect also the other strand via proton transfer across the hydrogen bonds in the base pairs. The free energies for electron transfer to or from a base can be drastically altered by the proton transfer processes that accompany the electron transfer reactions. Electron-transfer (ET) induced proton transfer sensitizes the base opposite to the ET-damaged base to redox damage, i.e., damage produced by separation of charge (ionization) has an increased change of being trapped in a base pair. Of the two types of base pair in DNA, A-T and C-G, the latter is more sensitive to both oxidative and reductive processes than the former.

Proton transfer induced by ET does not only occur between the heteroatoms (o and N) of the base pairs (intra-pair proton transfer), but also to and from adjacent water molecules in the hydration shell of DNA (extra-pair proton transfer). These proton transfers can involve carbon and as such are likely to be irreversible. It is the A-T pair which appears to be particularly prone to such irreversible reactions.  相似文献   

20.
《BBA》1970,205(3):513-519
1. The oligomycin-sensitive Mg2+-dependent ATPase activity of mitochondria isolated from wild-type yeast Saccharomyces cerevisiae was only slightly inhibited by atractyloside at concentrations which entirely prevented oxidative phosphorylation. This indicated that most of the ATPase in these mitochondrial preparations was located outside the atractyloside-sensitive barrier and did not participate in the energy-transfer process.

2. ATPase activity of mitochondria isolated from nuclear gene mutants deficient in a single cytochrome, a, b, or c, respectively, was strongly inhibited by oligomycin. The mitochondria from these mutants, like those from the wild-type strain, were able to incorporate amino acids into protein.

3. Mitochondrial ATPase activity of single nuclear gene mutants deficient in both cytochromes a and b was only slightly inhibited by oligomycin. These mitochondria were incapable of incorporating amino acids into protein. The mitochondria from these nuclear mutants thus resembled mitochondria of cytoplasmic respiration-deficient mutants.

4. The results suggest that mitochondrial cytochromes may be coded by nuclear genes and that product(s) of mitochondrial protein synthesis may be required for integrating the cytochromes a and b and the components of the oligomycin-sensitive ATPase complex into the mitochondrial membranes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号