首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide a global analysis of systems of within-host parasitic infections. The systems studied have parallel classes of different length of latently infected target cells. These systems can also be thought as systems arising from within-host parasitic systems with distributed continuous delays. We compute the basic reproduction ratio R0 for the systems under consideration. If R0< or =1 the parasite is cleared, if R0>1 and if a sufficient condition is satisfied we conclude to the global asymptotic stability (GAS) of the endemic equilibrium. For some generic class of models this condition reduces to R0>1. These results make possible to revisit some parasitic models including intracellular delays and to study their global stability.  相似文献   

2.
提出了一类含分布时滞的流行病模型,利用构造李亚普诺夫泛函的方法,得到了无病平衡点和地方病平衡点全局稳定性的结论,揭示了平均时滞对各类平衡点稳定性的影响。  相似文献   

3.
Mathematical models have made considerable contributions to our understanding of HIV dynamics. Introducing time delays to HIV models usually brings challenges to both mathematical analysis of the models and comparison of model predictions with patient data. In this paper, we incorporate two delays, one the time needed for infected cells to produce virions after viral entry and the other the time needed for the adaptive immune response to emerge to control viral replication, into an HIV-1 model. We begin model analysis with proving the positivity and boundedness of the solutions, local stability of the infection-free and infected steady states, and uniform persistence of the system. By developing a few Lyapunov functionals, we obtain conditions ensuring global stability of the steady states. We also fit the model including two delays to viral load data from 10 patients during primary HIV-1 infection and estimate parameter values. Although the delay model provides better fits to patient data (achieving a smaller error between data and modeling prediction) than the one without delays, we could not determine which one is better from the statistical standpoint. This highlights the need of more data sets for model verification and selection when we incorporate time delays into mathematical models to study virus dynamics.  相似文献   

4.
In this paper, we study the stability analysis of latent Chikungunya virus (CHIKV) dynamics models. The incidence rate between the CHIKV and the uninfected monocytes is modelled by a general nonlinear function which satisfies a set of conditions. The model is incorporated by intracellular discrete or distributed time delays. Using the method of Lyapunov function, we established the global stability of the steady states of the models. The theoretical results are confirmed by numerical simulations.  相似文献   

5.
研究一类具变时滞的模糊BAM神经网络.利用拓扑度论和微分不等式,获得了该类网络平衡点的存在性、唯一性和全局指数稳定性的充分条件.一个例子用来解释本文获得的结果.  相似文献   

6.
In this paper, we derive and study the classical SIR, SIS, SEIR and SEI models of epidemiological dynamics with time delays and a general incidence rate. By constructing Lyapunov functionals, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is shown. This analysis extends and develops further our previous results and can be applied to the other biological dynamics, including such as single species population delay models and chemostat models with delay response.  相似文献   

7.
Models of HIV-1 infection that include intracellular delays are more accurate representations of the biology and change the estimated values of kinetic parameters when compared to models without delays. We develop and analyze a set of models that include intracellular delays, combination antiretroviral therapy, and the dynamics of both infected and uninfected T cells. We show that when the drug efficacy is less than perfect the estimated value of the loss rate of productively infected T cells, delta, is increased when data is fit with delay models compared to the values estimated with a non-delay model. We provide a mathematical justification for this increased value of delta. We also provide some general results on the stability of non-linear delay differential equation infection models.  相似文献   

8.
Global convergence of delayed neural network systems   总被引:14,自引:0,他引:14  
In this paper, without assuming the boundedness, strict monotonicity and differentiability of the activation functions, we utilize a new Lyapunov function to analyze the global convergence of a class of neural networks models with time delays. A new sufficient condition guaranteeing the existence, uniqueness and global exponential stability of the equilibrium point is derived. This stability criterion imposes constraints on the feedback matrices independently of the delay parameters. The result is compared with some previous works. Furthermore, the condition may be less restrictive in the case that the activation functions are hyperbolic tangent.  相似文献   

9.
We formulate infection-age structured susceptible-infective-removed (SIR) models with behavior change or treatment of infections. Individuals change their behavior or have treatment after they are infected. Using infection age as a continuous variable, and dividing infectives into discrete groups with different infection stages, respectively, we formulate a partial differential equation model and an ordinary differential equation model with behavior change or treatment. We derive explicit formulas for the reproductive number by linear stability analysis of the infection-free equilibrium, and explicit formulas for the unique endemic equilibrium, when it exists, for both models. These formulas provide mathematical theoretical frameworks for analysis of impact of behavior change or treatment of infection to the transmission dynamics of infectious diseases. We study several special cases and provide sensitivity analysis for the reproductive numbers with respect to model parameters based on those formulas.  相似文献   

10.
We formulate infection-age structured susceptible-infective-removed (SIR) models with behavior change or treatment of infections. Individuals change their behavior or have treatment after they are infected. Using infection age as a continuous variable, and dividing infectives into discrete groups with different infection stages, respectively, we formulate a partial differential equation model and an ordinary differential equation model with behavior change or treatment. We derive explicit formulas for the reproductive number by linear stability analysis of the infection-free equilibrium, and explicit formulas for the unique endemic equilibrium, when it exists, for both models. These formulas provide mathematical theoretical frameworks for analysis of impact of behavior change or treatment of infection to the transmission dynamics of infectious diseases. We study several special cases and provide sensitivity analysis for the reproductive numbers with respect to model parameters based on those formulas.  相似文献   

11.
We introduce classes of differential susceptibility and infectivity epidemic models. These models address the problem of flows between the different susceptible, infectious and infected compartments and differential death rates as well. We prove the global stability of the disease free equilibrium when the basic reproduction ratio R0 £ 1{\mathcal{R}_0 \leq 1} and the existence and uniqueness of an endemic equilibrium when ${\mathcal{R}_0 >1 }${\mathcal{R}_0 >1 } . We also prove the global asymptotic stability of the endemic equilibrium for a differential susceptibility and staged progression infectivity model, when ${\mathcal{R}_0 >1 }${\mathcal{R}_0 >1 } . Our results encompass and generalize those of Hyman and Li (J Math Biol 50:626–644, 2005; Math Biosci Eng 3:89–100, 2006).  相似文献   

12.
The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.Work supported by the Special Program Control of Infectious Diseases, C.N.R. and by the M.P.I., Italy  相似文献   

13.
马庆波  向华 《生物信息学》2009,7(4):326-329
HBV(HePatitis B virus)是一种具有严重传染性的肝炎病毒,迄今为止,人们对它的免疫和慢性化的机制等方面还不甚了解。本文基于相关的病理知识,对应的建立了具有时滞的微分方程数学模型,系统地探讨了肝炎B病毒与宿主细胞之间的关系,利用Lyapunov函数方法研究了病毒动力学模型感染平衡点的局部稳定性和未感染平衡点全局稳定性,并利用数学模拟验证了理论分析。结果表明时滞的存在不会影响到感染平衡点的局部稳定性,但能影响平衡点到达的时间跨度,对于药物治疗的疗程和治疗时机的确定有参考意义。  相似文献   

14.
构造并研究了一类具有分布时滞和非线性种内制约关系的竞争模型.得到了这类模型的边界平衡点和共存平衡点全局渐近稳定的条件,以及分布时滞、非线性种内制约关系对模型的影响.  相似文献   

15.
Neural field models with transmission delays may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.  相似文献   

16.
研究了一类具有终宿主产卵期和中间宿主虫卵成熟期两时滞的包虫病传播动力学模型,得到了决定系统动力学行为的阈值R_0,当R_0〈1时,证明了未感染平衡点是局部渐近稳定的;当R_0〉1时,得到了感染平衡点是局部渐近稳定的充分条件。通过数值仿真验证了理论结果并探讨了时滞对系统动力学行为的影响,且发现若时滞在一定的范围内系统存在周期解.  相似文献   

17.
This paper studies a non-autonomous Lotka-Volterra almost periodic predator-prey dispersal system with discrete and continuous time delays which consists of n-patches, the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. By using comparison theorem and delay differential equation basic theory, we prove the system is uniformly persistent under some appropriate conditions. Further, by constructing suitable Lyapunov functional, we show that the system is globally asymptotically stable under some appropriate conditions. By using almost periodic functional hull theory, we show that the almost periodic system has a unique globally asymptotical stable strictly positive almost periodic solution. The conditions for the permanence, global stability of system and the existence, uniqueness of positive almost periodic solution depend on delays, so, time delays are "profitless". Finally, conclusions and two particular cases are given. These results are basically an extension of the known results for non-autonomous Lotka-Volterra systems.  相似文献   

18.
本文主要研究了延迟遗传调控网络的局部稳定性和该网络的Hopf分支存在条件.延迟遗传调控网络是无穷维系统,此类系统在平衡点线性化后的特征方程为超越方程。通过对此超越方程进行研究,得到了系统系数不同时的系统稳定的条件及相关结论,又进一步说明了此系统的Hopf分支存在条件.最后,举一个例子进行了数值仿真验证了所得到的结论.  相似文献   

19.
Predator-prey models with delay and prey harvesting   总被引:1,自引:0,他引:1  
It is known that predator-prey systems with constant rate harvesting exhibit very rich dynamics. On the other hand, incorporating time delays into predator-prey models could induce instability and bifurcation. In this paper we are interested in studying the combined effects of the harvesting rate and the time delay on the dynamics of the generalized Gause-type predator-prey models and the Wangersky-Cunningham model. It is shown that in these models the time delay can cause a stable equilibrium to become unstable and even a switching of stabilities, while the harvesting rate has a stabilizing effect on the equilibrium if it is under the critical harvesting level. In particular, one of these models loses stability when the delay varies and then regains its stability when the harvesting rate is increased. Computer simulations are carried to explain the mathematical conclusions. Received: 1 March 2000 / Revised version: 7 September 2000 /?Published online: 21 August 2001  相似文献   

20.
The paper draws together a large and scattered body of empirical evidence concerning the prevalence of snail infection with schistosome parasites in field situations, the duration of the latent period of infection in snails (and its dependence on temperature), and the mortality rates of infected and uninfected snails in field and laboratory conditions. A review and synthesis of quantitative data on the population biology of schistosome infections within the molluscan host is attempted and observed patterns of infection are compared with predictions of a schistosomiasis model developed by May (1977) which incorporates differential snail mortality (between infected and uninfected snails) and latent periods of infection. It is suggested that the low levels of prevalence within snail populations in endemic areas of schistosomiasis are closely associated with high rates of infected snail mortality and the duration of the latent period of infection within the mollusc. In certain instances, the expected life-span of an infected snail may be less than the duration of the latent period of infection. Such patterns generate very low levels of parasite prevalence. A new age prevalence model for schistosome infections within snail populations is developed and its predictions compared with observed patterns. The implications of this study of observed and predicted patterns of snail infection within molluscan populations are discussed in relation to the overall transmission dynamics of schistosomiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号