首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary DNA-DNA hybridization was used to measure the average genomic divergence among the four chromosomal species of the Eurasian mole rats belonging to theSpalax ehrenbergi complex (Rodentia: Spalacidae). The percent nucleotide substitutions in the single-copy nuclear DNA among the species ranged from 0 to 5%, suggesting that speciation has occurred with minor genomic changes in these animals. The youngest chromosomal species appear to differ by 0.2–0.6% base pair mismatch, which is only between one and three base differences in a 500-bp fragment. The interspecific values of percent nucleotide differences permit the recognition of two well-separated speciation events in theS. ehrenbergi complex, the older (of Lower Pleistocene age) having isolated the chromosomal species 2n=54 before the divergence of the three other species.DNA-DNA hybridization was also used to compare the Spalacinae (Eurasian mole rats), Murinae (Old World rats and mice), and Arvicolinae (voles and lemmings). These data enabled us to estimate the time of divergence of the spalacids at ca. 19 million years ago. The dates of divergence among the other rodent lineages, as predicted by DNA hybridization results, agree well with paleontological data. These dates of divergence are obtained by the relation between geological time and single-copy nuclear DNA change, a relation that was calibrated by Catzeflis et al. (1987) through the use of fossil Arvicolinae and Murinae data.  相似文献   

2.
The DNA-DNA hybridization method was used to determine the divergence degree of unique sequences of five bivalvia species belonging to the Mytilinae subfamily. The matrix of delta Tm values for heteroduplexes of unique sequences was found which made it possible to define three phylogenetic branches within the subfamily. Under non-stringent hybridization conditions (55 degrees C, 0.5M PB) the divergence between species of any two branches was about 14% of nucleotide substitutions. The hybridization of [3H] unique sequences of Mytilinae with DNA fragments of Modiolus modiolus, a representative of the closest relative Modiolinae subfamily, showed that the divergence rate of unique sequences in two phylogenetic lines of the Mytilus genusis higher than in the line of the Crenomytilus genus I0.35-0.23% and 0.1% of nucleotide substitutions per one million years, respectively). According to the matrix of delta Tm values for five species of Mytilinae and Modiolus modiolus, a phylogenetic tree was built reflecting the differences between the divergence rates in different branches.  相似文献   

3.
Oleĭnik AG  Skurikhina LA  Brykov VA 《Genetika》2011,47(12):1642-1654
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplotype and nucleotide diversity were 0.5261 +/- 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise phi(ST) values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Nested analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

4.
Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection[Current Zoology 55(2):158-164,2009].  相似文献   

5.
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D-loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplo-type and nucleotide diversity were 0.5261 ± 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise G4ST values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

6.
Understanding the relationship between reproductive isolation and time since divergence is critical to our understanding of speciation. One group for which we know little about the relationship between hybridization/introgression and time since divergence is the marine broadcast spawners. Here, we investigate the distribution of closely related cryptic species of marine broadcast spawners (Type A and B Ciona intestinalis) in areas of potential sympatry to determine whether these two types occur together and if so, whether they show evidence of hybridization and introgression. Then we combine our data with other studies to investigate general patterns of reproductive isolation versus divergence in marine broadcast spawners. We found that Type A and B C. intestinalis occurred sympatrically in 2007, and that 21 individuals show evidence of introgression in sympatry (out of approximately 500). Type A and B C. intestinalis are 12.4% divergent at mitochondrial COI (mtCOI), and in comparison with other marine broadcast spawning species at mtCOI, these two types may be near the upper limit of the range of divergence values in which introgression is still possible. However, introgression at divergence levels similar to those found in Ciona does exist, prompting questions about the strength of postmating prezygotic reproductive barriers in marine broadcast spawners.  相似文献   

7.
In 2009, the Consortium for the Barcode of Life (CBOL) recommended the combination of rbcL and matK as the plant barcode based on assessments of recoverability, sequencing quality, and levels of species discrimination. Subsequently, based on a study of more than 6600 samples belonging to 193 families from seven phyla, the internal transcribed spacer (ITS) 2 locus was proposed as a universal barcode sequence for all major plant taxa used in traditional herbal medicine. Neither of these two studies was based on a detailed analysis of a particular family. Here, Zingiberaceae plants, including many closely related species, were used to compare the genetic divergence and species identification efficiency of ITS2, rbcL, matK, psbK-psbI, trnH-psbA, and rpoB.The results indicate that ITS2 has the highest interspecific divergence and significant differences between inter- and intraspecific divergence, whereas matK and rbcL have much lower divergence values. Among 260 species belongingto 30 genera in Zingiberaceae, the discrimination ability of the ITS2 locus was 99.5% at the genus level and 73.1% at the species level. Thus, we propose that ITS2 is the preferred DNA barcode sequence for identifying Zingiberaceae plants.  相似文献   

8.
Environmental changes, such as changes in the coastal topography due to Eurasian plate movements, climate oscillation during the Pleistocene, and alteration of ocean currents, have complicated the geographical structure of marine species and deepened their divergence between populations. As two widely distributed species of crustacean (Oratosquilla oratoria and Eriocheir japonica), weak differences were expected due to their high dispersal potential of planktonic larvae with ocean currents. However, results showed a significant genetic divergence between north of China and south of China in the study. In addition, the estimated north–south divergence time (27–30.5 Myr) of mantis shrimp was near the time of the Himalayan movement, and the China–Japan clade divergence time (10.5–11.9 Myr) of mitten crabs was also coincident with the time of the opening of the Sea of Japan. Thus, we hypothesized that environmental changes in the coastal topography contributed to the marine species divergence. Furthermore, based on phylogenetic analysis, network analysis and haplotype distribution, we surmised that mitten crabs originated from a population with the oldest haplotype (H6) and then divided into the north and south populations due to the recent Eurasian plate movements and ocean currents. And lineage of Japan originated from the north population for the opening of the Sea of Japan. While O. oratoria was guessed to originate from two separate populations in the China Sea. The results of “star-like” network, negative values in neutral test, and Tajima's D statistics of two marine species supported a recent rapid population expansion event after the Pleistocene glaciations.  相似文献   

9.
Microchiroptera have diversified into many species whose size and the shapes of the complicated ear and nose have been adapted to their echolocation abilities. Their speciation processes, and intra- and interspecies relationships are still under discussion. Here we report on the geographical variation of Japanese Rhinolophus ferrumequinum and R. cornutus using the complete sequence of the mitochondrial cytochrome b gene to clarify the phylogenetic positions of the 2 species as well as that of Rhinolophidae within the Microchiroptera. We have found that sequence divergence values within each of the 2 species are unexpectedly low (0.07%-0.94%). We have also found that there is no local specificity of their mtCytb alleles. On the other hand, the divergence values for Japanese Microchiroptera (12.7%-16.6%) are much higher than those for other mammalian genera. Similarly, the values among five genera of Vespertilionidae were 20.5%-27.3%. Phylogenetic analysis shows that the 2 species of family Rhinolophidae in the suborder Microchiroptera belong to the Megachiroptera cluster in the constructed maximum parsimony tree. These results suggest that the speciation of Rhinolophidae involved its divergence as an independent lineage from other Microchiroptera, and other microbats might be paraphyletic. In addition, the tree also shows that the order Chiroptera is monophylitic, and the closest group to Chiroptera is the ungulates.  相似文献   

10.
We have investigated the differences between nuclear genomes of two purportedly congeneric species of sea urchin that differ radically in early development. Heliocidaris tuberculata develops by means of a typical pluteus larva, whereas H. erythrogramma develops directly from an egg that is 100-fold the volume of the H. tuberculata egg. Reassociation kinetic analysis shows that the kinetic components of the genomic DNA from the two species are essentially the same. No single repeat component explains the 30% difference between the H. erythrogramma and H. tuberculata genomes. Reciprocal hybridization of tracer-labeled single-copy DNA fractions between these species indicates that approximately 50% of the single-copy DNA is sufficiently similar to form hybrids at standard hybridization criterion. Thermal denaturation profiles of the hybridized single-copy DNA sequence yields median (T50H) values of 13.8 degrees-16.5 degrees C. This result suggests a divergence time of 10-13 Mya, which is comparable to divergence times between congeneric sea urchin species in other genera that do not differ significantly in development. Radical differences in early developmental processes can evolve rapidly between closely related forms.  相似文献   

11.
The freshwater fish fauna of Mexico and Guatemala is exceptionally diverse with >600 species, many endemic. In this study, patterns of sequence divergence were analysed in representatives of this fauna using cytochrome c oxidase subunit 1 (COI) DNA barcodes for 61 species in 36 genera. The average divergence among conspecific individuals was 0·45%, while congeneric taxa showed 5·1% divergence. Three species of Poblana , each occupying a different crater lake in the arid regions of Central Mexico, have had a controversial taxonomic history but are usually regarded as endemics to a single lake. They possess identical COI barcodes, suggesting a very recent history of isolation. Representatives of the Cichlidae, a complex and poorly understood family, were well discriminated by barcodes. Many species of Characidae seem to be young, with low divergence values (<2%), but nevertheless, clear barcode clusters were apparent in the Bramocharax – Astyanax complex. The symbranchid, Opisthernon aenigmaticum , has been regarded as a single species ranging from Guatemala to Mexico, but it includes two deeply divergent barcode lineages, one a possible new endemic species. Aside from these special cases, the results confirm that DNA barcodes will be highly effective in discriminating freshwater fishes from Central America and that a comprehensive analysis will provide new important insights for understanding diversity of this fauna.  相似文献   

12.
The expanding use of DNA barcoding as a tool to identify species and assess biodiversity has recently attracted much attention. An attractive aspect of a barcoding method to identify scleractinian species is that it can be utilized on any life stage (larva, juvenile or adult) and is not influenced by phenotypic plasticity unlike morphological methods of species identification. It has been unclear whether the standard DNA barcoding system, based on cytochrome c oxidase subunit 1 (COI), is suitable for species identification of scleractinian corals. Levels of intra- and interspecific genetic variation of the scleractinian COI gene were investigated to determine whether threshold values could be implemented to discriminate conspecifics from other taxa. Overlap between intraspecific variation and interspecific divergence due to low genetic divergence among species (0% in many cases), rather than high levels of intraspecific variation, resulted in the inability to establish appropriate threshold values specific for scleractinians; thus, it was impossible to discern most scleractinian species using this gene.  相似文献   

13.
In this paper we attempt to investigate relationships between the amount of genetic divergence in nuclear genes and the degree of morphological differentiation for different sets of characters in Dolichopoda cave crickets. Six populations representing five Dolichopoda species from Central and Southern Italy have been studied. The overall genetic divergence at nuclear genes was estimated both by single copy DNA-DNA hybridization and allozyme frequencies at 26 loci. Euclidean distances for two multivariate sets of morphometric variables: one describing body and appendage morphology, the other male epiphallus shape. Results showed a close agreement between the branching patterns of ΔTm values from DNA hybridization and Nei's allozyme distance values. On the other hand, patterns of morphological divergence revealed independent trends, although the branching pattern based on epiphallus morphology matched to some extent the phylogenies inferred from molecular data. The relative value of molecular and morphological characters as reliable phylogenetic tracers was evaluated in relation to their dependence on evolutionary factors. Implications of these findings on the calibration of molecular clocks are also discussed. The absolute rate of molecular change based on scDNA was estimated to be at least 0.98% divergence/my/lineage. This result is in agreement with calibrations attempted on other insects. Estimates of time of divergence based on allozymes (Nei's D) were highly consistent with the estimate from geological data.  相似文献   

14.
入侵害虫西花蓟马及其他8种常见蓟马的分子鉴定   总被引:12,自引:0,他引:12  
用PCR产物直接测序法对入侵害虫西花蓟马和其他8种蓟马的线粒体 COⅠ基因433 bp片段测序,获得62个个体的序列。分子数据分析显示: 种内个体间平均遗传距离在0~0.005之间,2003年在北京发现的西花蓟马与欧洲等地区报导的西花蓟马不存在明显的遗传差异; 9种蓟马种间平均遗传距离为0.213。构建的NJ树可以很好的显示蓟马的聚类,物种各单元型最初分支自展值均达到100%。结果表明,基于PCR及直接测序技术的分子鉴定可以达到准确鉴定蓟马物种之目的。  相似文献   

15.
Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (theta) to T and the effect of uncertainty in theta on estimates of population divergence (tau) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on tau decrease when the range over which ancestral population size theta is assumed to be distributed decreases and when tau increases; they generally exclude zero when tau/(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding tau = 0 is roughly that l tau/(4Ne) > 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time.  相似文献   

16.
DNA barcoding of Brazilian sea turtles (Testudines)   总被引:1,自引:0,他引:1  
Five out of the seven recognized species of sea turtles (Testudines) occur on the Brazilian coast. The Barcode Initiative is an effort to undertake a molecular inventory of Earth biodiversity. Cytochrome Oxidase c subunit I (COI) molecular tags for sea turtle species have not yet been described. In this study, COI sequences for the five species of sea turtles that occur in Brazil were generated. These presented widely divergent haplotypes. All observed values were on the same range as those already described for other animal groups: the overall mean distance was 8.2%, the mean distance between families (Dermochelyidae and Cheloniidae) 11.7%, the mean intraspecific divergence 0.34%, and the mean distance within Cheloniidae 6.4%, this being 19-fold higher than the mean divergence observed within species. We obtained species-specific COI barcode tags that can be used for identifying each of the marine turtle species studied.  相似文献   

17.
The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage.  相似文献   

18.
The mitochondrial DNA control region is one of the most frequently utilized sequences for both intra- and interspecific genetic studies of fishes, yet a tenable divergence rate specifically for fish control regions has not been established. We attempted to establish a rate through a comparative study of control region sequences and those of a protein-coding mitochondrial gene region from geminate species of snook (Centropomus) assumed to have been separated by the emergence of the Isthmus of Panama 3.5 million years ago. The divergence rate suggested from the control region alignments between the geminates was markedly higher than rates currently applied in many studies, as was the rate suggested from the ND 5/6 protein coding region alignments. However, the suggested ND 5/6 rate when applied to alignments with the outgroup species was not concordant with the scant centropomid fossil record and therefore the assumed separation time of 3.5 million years seemed implausible. An average control region divergence rate was then estimated based on separation times of snook species derived assuming a divergence rate of 1% per million years for transversion substitutions at third codon positions in the ND 5/6 region. Using these separation times, a tenable average divergence rate for fish control regions of approximately 3.6% per million years +/- 0.46% SE was calculated.  相似文献   

19.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

20.
DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing baseline reference for phylogenetic analysis and aquatic ecosystem biomonitoring. We obtained 112 novel sequences of the barcode region of the mitochondrial DNA cytochrome c oxidase subunit I gene representing 11 families, 25 genera, and 43 species of mayfly (Insecta: Ephemeroptera) from South Korea. No species shared barcode sequences and all can be identified with barcodes with a possible exception of some species. Minimum levels of interspecific genetic distances ranged from 6.7 to 32.9% (mean: 23.7%), whereas average levels of intraspecific divergence was 3.7%. The latter value was inflated by the presence of very high divergences within some taxa. In fact, approximately 33.3% (15/45) of the species included two or more haplotype clusters showing greater than 5.0% sequence divergence and some values were as high as 32.9%. Many of the species with high intraspecific divergences are para‐ or polyphyletic and represent the possibility of species complexes. Our study suggests that type or topotype specimens should be sequenced to identify accurate barcoding clusters with morphological species concepts and also to determine the status of currently synonymized species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号