首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allelopathy of the eucalypt has been considered as an important mechanism for the biodiversity reduction in the eucalypt plantation. To understand the allelopathic potential of the eucalypt (Eucalyptus grandis) roots and rhizosphere soil along a chronosequence (2, 4, 6, 8, 10 years), the germination and growth characteristics of three plant species (Raphanus sativus, Phaseolus aureus, and Lolium perenne) growing nearby or beneath the eucalypt plantations were measured. The results showed that aqueous extract of E. grandis root suppressed the germination and early seedling growth of the target plants. The younger E. grandis exhibited a comparatively stronger allelopathic potential. The highest dose root extracts from 4 years old E. grandis showed the strongest inhibitory effects on the germination rates of the target species, the inhibitory rates were about 48, 51.2, and 56.56% for R. sativus, P. aureus, and L. perenne, respectively. However, present biotests of rhizosphere soils from 6, 8, and 10-year-old plantations exhibited a remarkable stimulative effect on L. perenne, which indicated that the soil might neutralize or dilute allelopathic agents with the increase of plantation age. In addition, according to GC–MS analysis, more allelopathic potential compounds were found in the rhizosphere soil and roots of younger E. grandis plantation. Moreover, more allelochemicals were obtained from soil than from roots. The allelopathic compounds in roots and rhizosphere soil may play important roles in allelopathy of E. grandis plantation. More attention should be paid to the younger E. grandis plantations for the relative higher allelopathic effects.  相似文献   

2.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

3.
Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus were assessed using a two-phase approach under controlled laboratory conditions. In the co-culture experiment (phase І), the growth of S. obliquus at two different initial cell densities was significantly inhibited by P. malaianus. Moreover, the growth inhibition was dependent on the biomass density of P. malaianus. Antioxidant enzymes (SOD, CAT and POD), MDA, APA, total soluble protein, protein electrophoretic pattern and morphology of S. obliquus were determined after the co-culture experiment was terminated. The activities of SOD, CAT, POD and APA at the low initial cell density were stimulated, the contents of MDA and total soluble protein were increased, and some special protein bands disappeared in P. malaianus treatments. The macrophyte had no effect on the activities of SOD and APA at the high initial cell density, but significantly influenced other physiological parameters of S. obliquus with the increase of biomass density. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4-celled coenobia. The results indicated P. malaianus had significant allelopathic effects on the growth and physiological processes of S. obliquus. Moreover, the allelopathic effects depended on initial algal cell density, biomass density of the macrophyte, and their interaction. In the experiment of P. malaianus culture filtrates (phase II), filtrates from combined culture of plant and S. obliquus at the low initial cell density exhibited no apparent growth inhibitory effect on S. obliquus. The result showed that initial addition of growth-inhibiting plant filtrates had no allelopathic effect on S. obliquus. We concluded that the allelopathic effects on S. obliquus were found in the presence of P. malaianus, but not in P. malaianus filtrates. However, the absence of allelopathic effect on S. obliquus might be due to the very low concentrations of allelochemicals in the filtrates. Handling editor: S. M. Thomas  相似文献   

4.
Allelopathy is an important process in plant communities, but the role of seed allelopathy in natural ecosystems remains poorly understood. In the present study, we examined the potential allelopathic effects of Ligularia virgaurea (a dominant species in degraded Tibetan grasslands) seeds on the germination of four native grass species (Festuca sinensis, Agrostis gigantean, Bromus inermis, and Elymus nutans). The results showed that L. virgaurea seeds can have potential allelopathic effects on seed germination, mean time to germination and root growth rates of native grass species. We further demonstrate that these effects are driven by a water-soluble seed leachate. Species with smaller seeds were generally more sensitive than larger seeded species. The results suggest that seed-to-seed allelopathic potential may be an important mechanism driving the dominance of L. virgaurea in degraded alpine grasslands on the Tibetan Plateau. Further studies are required to demonstrate effects of seed-to-seed potential allelopathy in a field setting.  相似文献   

5.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

6.
Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae)   总被引:2,自引:0,他引:2  
Garlic mustard (Alliaria petiolata, Brassicaceae) is an invasive, nonindigenous species currently invading the understory of North American woodlands where it is a serious threat to the native flora. Part of this success might be due to allelopathic interference by garlic mustard. Two congeneric species, the European Geum urbanum and the North American Geum laciniatum, were tested for allelopathic inhibition of germination by garlic mustard. Seeds were germinated either on substrate contaminated by garlic mustard or on substrate with contamination neutralized by activated carbon. Allelopathic effects of native European and invasive North American garlic mustard populations were also compared. Activated carbon increased germination by 14%, indicating that garlic mustard contaminated the substrate through root exudates. Activated carbon in turn counteracted this effect. The two test species differed in their sensitivity to allelopathic interference. North American G. laciniatum had a much stronger increase in germination when activated carbon was added to the substrate, independent of the origin of garlic mustard. In contrast, the European G. urbanum germinated better in substrate precultivated with North American garlic mustard, whereas activated carbon increased its germination only in substrate precultivated with European garlic mustard.  相似文献   

7.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

8.
Allelopathy has been considered a key mechanism to explain the invasiveness of some species. It is well known that invasive plants can affect native plants by producing novel allelochemicals but some exotic plant species may be also sensitive to allelochemicals released by native species, providing a tool to reduce growth and impacts of invasive exotic species. Here, using growth chamber experiments we tested the mutual potential allelopathic effects of Sesbania virgata (a native dominant species) and the alien Leucaena leucocephala seeds. S. virgata was unaffected by seed leachates of L. leucocephala, indicating that, under lab conditions, this legume presents resistance to the phytotoxic compounds produced by seeds of this alien species. In contrast, germination and seedling growth of L. leucocephala were strongly affected by the phytochemicals produced by seeds of S. virgata. A delay in endospermic mobilization of storage carbohydrates (raffinose-family oligosaccharides and galactomannan) was observed in the alien species. These potential allelopathic effects could not be attributed sole to the presence neither of the phytoxic catechin nor of ABA in seed leachates of S. virgata. Our findings indicate that the in vitro behavior of S. virgata is consistent with its aggressiveness in natural environment and suggest sesbanimide as a potential candidate as implicated in the noxious effects of S. virgata on the alien species.  相似文献   

9.
Using cell suspension ability as an indicator, we studied the inhibitory effect of garlic (Allium sativum) and diallyl trisulfide on six species of red tide causing algae. This included: the inhibition by 0.08% garlic solution of five algal species — Alexandrium tamarense, Scrippsiella trochoidea, Alexandrium catenella, Alexandrium minutum and Alexandrium satoanum; the effects of garlic concentration on the inhibition of A. tamarense, S. trochoidea and Chaetoceros sp.; the effects of inhibitory time on the rejuvenation of algal cells; and the effects of heating and preservation time on algal inhibition by garlic solution. In addition, whether or not the ingredients of garlic solution had a possible algicidal effect was studied by comparing inhibition of A. tamarense by garlic solution and man-made diallyl trisulfide. The results showed that 1) inhibition by garlic solution was significant on A. tamarense, A. satoanum, A. catenella and S. trochoidea, and the least effective was a concentration of 0.04% on A. tamarense and S. trochoidea. Moreover, the higher the concentration, the stronger was the inhibition, and a high inhibitory rate (IR) could be maintained for at least three days when the garlic concentration was above 0.04%. For A. tamarense, it was also found that the longer the inhibitory time and the higher the concentration, the lower was the rate of resumed cell activity. On the contrary, garlic solution could not inhibit A. minutum or Chaetoceros sp.; 2) The IR to A. tamarense was reduced slightly as the heating time of the garlic solution was lengthened, but the average IR was still above 80%. There was no significant difference between the IR of the supernatant and sediment of the garlic solution. Furthermore, no change of algal inhibition was found when the garlic solution was preserved at 20°C for several days; 3) As with garlic solution, diallyl trisulfide inhibited A. tamarense strongly; the IR was above 93% and was maintained for at least three days, as long as the concentration was 3.2–10.0 mg L−1. Thus, diallyl trisulfide may have been the major ingredient in garlic solution which inhibited the algae but, in addition, more than one ingredient may have been inhibiting the algae. In conclusion, garlic was a good algal inhibitor with many advantages, such as being common, cheap, non toxic and with high efficiency, and diallyl trisulfide, one of the components of garlic, was similarly effective in algal inhibition. It would be useful, therefore, to further study garlic as an environmentally friendly algal inhibitor.  相似文献   

10.
Invasive species continue to alter the plant communities of the eastern United States. To better understand the mechanisms and characteristics associated with invasive success, we studied competition between two Acer species. In a greenhouse, we tested (1) the effect of forest soil type (beneath an invasive and native stand) on seedling growth of the invasive Acer platanoides (Norway maple) and native A. rubrum (red maple), and the (2) effects of full (above- and below-ground) and partial inter-specific competition on species growth. We found A. rubrum growth was negatively affected by soil from the invaded stand, as it had lower above-ground (32%) and below-ground (26%) biomass, and number of leaves (20%) than in the native soil. The root:shoot resource allocations of A. platanoides depended on soil type, as it had 14% greater root:shoot mass allocation in the native soil; this ability to change root:shoot allocation may be contributing to the ecological success of the species. Widely published as having a large ecological amplitude, A. rubrum may be a useful species for ecological restoration where A. platanoides has been present, but the impacts of A. platanoides on soil functioning and subsequent plant interactions must be addressed before protocols for native reintroductions are improved and implemented.  相似文献   

11.
The allelopathic potential of Pueraria thunbergiana was investigated under laboratory conditions. The powder of freeze-dried leaves of P. thunbergiana inhibited the germination and the growth of roots and shoots of cress, lettuce, timothy and ryegrass. Significant reductions in the germination and growth of roots and shoots were observed as the powder concentration increased in all bioassays. The putative compounds causing the inhibitory effect of the powder were isolated and determined by their spectral data as cis.trans- and trans,trans-xanthoxin This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Allelopathy is very important for the scientific disposition of garden plants. To understand the allelopathic potential of Koelreuteria bipinnata Franch. var. integrifoliola, the germination of Agrostis tenuis Sibth., Festuca arundinacea Schreb. and Lolium perenne L. were determined under laboratory conditions. The results showed that root, stem and leaf aqueous extracts of K. bipinnata var. integrifoliola had allelopathic effects on all three turf grasses, and the allelopathic activity varied according to extract concentrations, test species, and extract sources. Lower extract concentrations did not affect or promoted the germination and initial seedling growth of turf grasses, but the highest concentrations almost had inhibitory effect. The order of allelopathic potentials of the three organs on germination of these receptors was root < stem < leaf. And at the highest concentration of leaf extract, the most strongly inhibition was found in A. tenuis, followed by F. arundinaces and then L. perenne. In addition, according to gas chromatography–mass spectrometry (GC–MS) analysis, the allelopathic potential compounds and their abundance in root, stem and leaf were obviously different. Therefore, the allelopathic compounds may responsible for allelopathy of K. bipinnata var. integrifoliola. These findings suggested that more attention should be paid to the leaf of K. bipinnata var. integrifoliola for the relative higher allelopathic effects.  相似文献   

13.
North American ginseng (NAG) (Panax quinquefolius L.) is a medicinally important plant with multiple uses in the natural health product industry. As seed propagation is time-consuming because of the slow growth cycle of the plant, in vitro propagation using a bioreactor system was evaluated as an effective approach to accelerate plant production. An efficient method was developed to multiply nodal explants of NAG using liquid-culture medium and a simple temporary immersion culture vessel. The effects of plant growth regulators, phenolics, and chemical additives (activated charcoal, melatonin, polyvinylpolypyrrolidone, and ascorbic acid) were evaluated on in vitro-grown NAG plants. The highest number (12) of shoots per single node was induced in half-strength Schenk and Hildebrandt basal medium containing 2.5 mg/l kinetin, in which 81% of the cultured nodes responded. In a culture medium with 0.5 mg/l α-naphthalene acetic acid (NAA), roots were induced in 78% of the explants compared to 50% with a medium containing indole-3-acetic acid. All of the resulting plants appeared phenotypically normal, and 93% of the rooted plants were established in the greenhouse. Phenolic production increased significantly (P < 0.05) over a 4-wk culture period with a negative impact on growth and proliferation. Activated charcoal (AC; 50 mg/l) significantly reduced total phenolic content and was the most effective treatment for increasing shoot proliferation. Shoot production increased as the phenolic content of the cultures decreased. The most effective treatment for NAG development from cultured nodal explants in the bioreactor was 2.5 mg/l kinetin, 0.5 mg/l NAA, and 50 mg/l AC in liquid culture medium. This protocol may be useful in providing NAG tissues or plants for a range of ginseng-based natural health products.  相似文献   

14.
The ability to competitively suppress native species is key to successful invasion. Since invasions involve an increase in abundance or dominance of a species in its non-native range, competitive effects might be expected to be stronger in the non-native range of an invader; however, there have been few comparisons of the competitive effects of invasive plants on species from invaded ranges versus species from native ranges. We compared the competitive and allelopathic effects of Acroptilon repens on native North American species to effects on related species from the native range of Acroptilon in Uzbekistan. We also compared the competitive interactions among these North American and Eurasian species, in the absence of Acroptilon, examining the hypothesis that particular regional species pools may show differences in competitive ability. The results showed that Acroptilon had stronger competitive effects against native North American species than against species native to Uzbekistan. There was no difference in the competitive effects among Eurasians and North Americans. The effects of leachates collected from Acroptilon roots were weak but more negative on species from North America than on species from Uzbekistan. Our results suggest that inherently stronger competitive and allelopathic effects of Acroptilon on North American plants than on plants from its native range may contribute to its invasive success.  相似文献   

15.
In water-limited ecosystems, where potential evapotranspiration exceeds precipitation, it is often assumed that plant invasions will not increase total ecosystem water use, because all available water is evaporated or transpired regardless of vegetation type. However, invasion by exotic species, with high water use rates, may potentially alter ecosystem water balance by reducing water available to native species, which may in turn impact carbon assimilation and productivity of co-occurring species. Here, we document the impact of invasion by an understory exotic woody species (Acacia longifolia) in a semi-arid Mediterranean dune pine forest. To quantify the effects of this understory leguminous tree on the water use and carbon fixation rates of Pinus pinaster we compare an invaded and a non-invaded stand. A. longifolia significantly altered forest structure by increasing plant density and leaf area index in the mid-stratum of the invaded forest. A. longifolia contributed significantly to transpiration in the invaded forest (up to 42%) resulting in a slight increase in stand transpiration in the invaded relative to non-invaded forest. More importantly, both water use and carbon assimilation rates of P. pinaster were significantly reduced in the invaded relative to non-invaded stand. Therefore, this study shows that exotic plant invasions can have significant impacts on hydrological and carbon cycling even in water-limited semi-arid ecosystems through a repartitioning of water resources between the native and the invasive species.  相似文献   

16.
Single-cell Raman microspectroscopy has the potential to report on the whole-cell chemical composition of bacteria, reflecting metabolic status as well as growth history. This potential has been demonstrated through the discriminant functional analysis of Raman spectral profiles (RSP) obtained from the soil and plant-associated bacterium Pseudomonas fluorescens SBW25, grown in vitro using defined media, and in planta using 3-month-old sugar beets (Beta vulgaris var. Roberta). SBW25 in vitro RSP data showed significant variation between those cells grown on different amino acids, sugars, TCA cycle intermediates, rich King's B, and culture media derived from the sugar beet phytosphere. Raman analysis was also able to follow the transition of SBW25 starved of carbon over a period of days, and SBW25 in planta RSP data also showed variation with significant differences between bacteria recovered from soil and the rhizosphere. SBW25 whole-cell chemical composition, and therefore growth and metabolic history, could be interpreted by coanalyzing in vitro and in planta RSP data. SBW25 recovered from the phytosphere was found to be more similar to SBW25 grown in vitro on Fru or Asp, rather than on Glc or Arg, and quite dissimilar to that resulting from carbon starvation. This suggests that SBW25 growth in the phytosphere is generally neither carbon-catabolite-repressed nor carbon-limited. These findings demonstrate that the analysis of single-cell RSP can differentiate between isogenic populations of bacteria with different metabolic histories or after recovery from different parts of their natural environment. In addition, Raman analysis is also capable of providing biologically relevant biochemical inferences, which might then be tested to uncover the mechanistic basis (biochemical–metabolic–genetic) differentiating bacteria growing in complex environments and exposed to different conditions.  相似文献   

17.
Bickford CP  Kolb TE  Geils BW 《Oecologia》2005,146(2):179-189
Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or δ13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.  相似文献   

18.
The foraging behaviour variability of three striped red mullet (Mullus surmuletus L. 1758) populations with respect to the vegetation cover was examined along the French Mediterranean coasts. We tested both the carrying capacity of different habitats and the hypothesis of a food segregation by the invasive alga Caulerpa taxifolia (Vahl) C. Agardh, on the functioning of benthic fish populations. The results indicated a significant site effect on M. surmuletus foraging behaviour and movements. The vegetation cover may play an important role in modifying the striped red mullet cost of foraging (sampling effort) and thus its strategy of prey capture. As long as the cover of marine phanerogams and/or macrophyte algae (Caulerpaceae) increases, the foraging budget and the distances covered in search of prey decrease significantly. Similarly, the striped red mullet increases the prospected sample periods to augment its foraging success, swimming above the bottom. These changes are related to the development of a dense superficial network of plagiotropic rhizomes and stolons, and to the reduction of space between fronds that limits the accessibility to resources and may increase intra-specific food competition. The role of C. taxifolia does not differ from that of other marine phanerogams but induces significant changes in the structure of Mullidae populations at the local level. The rapid expansion of Caulerpaceae in the Mediterranean Sea could constitute a real threat for the balance of the marine coastal biodiversity and the ecology of M. surmuletus, which is considered a flagship species for coastal Mediterranean demersal fisheries.  相似文献   

19.
Acacia mearnsii is an introduced Australian acacia in South Africa and has invaded more than 2.5 million ha, primarily establishing in rangeland and riparian areas. Because acacias have the capability to fix N, A. mearnsii invasions may fundamentally change N dynamics in invaded systems. This study compares biological N2-fixation in the alien invasive A. mearnsii and the native A. caffra growing in a grassland riparian zone in the Komati Gorge Reserve, Mpumalanga, South Africa. A 15N natural abundance field survey suggested that both mature alien and native acacias fix N under current conditions in the riparian zone. Significantly depleted δ15N was observed in both acacias relative to reference species, although variation in δ15N was not correlated with N concentrations. Calculated contributions of N2-fixation (%Ndfa) suggest that alien acacias fix significantly more of their N than native acacias (~75 ± 5% SE and 53 ± 9% SE, respectively). There was a larger variation in δ15N and %Ndfa in the native acacia, suggesting relatively high plasticity in its N2-fixation contributions. This plasticity was interpreted as a facultative N2-fixation strategy for the native acacia, while the N2-fixation strategy of the alien acacia remained unclear. Our results emphasize the importance of potentially elevated N inputs through N2-fixation by invasive legumes in invaded landscapes. Furthermore, they suggest that N2-fixation by invasive acacias may not respond to fine-scale patchiness in soil N in the same manner as native acacias, making them potential contributors to N excess in Southern Africa.  相似文献   

20.
American ginseng (Panax quinquefolius) is America’s premier wild-harvested, medicinal plant that inhabits the forest understory of eastern deciduous forests. Recent research revealed that birds, particularly wood thrushes (Hylocichla mustelina), disperse ginseng seeds by regurgitating viable seeds 15–37 min after consuming the berries. We carried out two studies to examine the potential effect of thrushes on spatial dispersion patterns of ginseng. First, to analyze how far wood thrushes could disperse seeds, two wood thrushes were outfitted with radio transmitters and tracked for multiple days. Second, for 28 natural populations of ginseng, we created a clustering index to quantify to what degree populations were structured into spatially separated units. To further detect spatial impacts of thrushes, we analyzed inter-cluster distances and the overall spread of ginseng populations. Over the time period in which wood thrushes retain ginseng in their guts, the seeds would be dispersed a mean distance of 15.2–21.7 m. The observed distances ranged from 0–96.6 m. These distances were comparable to the overall spread metric for ginseng populations with wood thrushes, which had increased spacing in comparison to those without wood thrushes. The mean dispersion index differed for populations with and without wood thrushes. It is imperative to understand the interaction between wood thrushes and ginseng to facilitate conservation, as both species are experiencing population declines. Dispersal of seeds by wood thrushes could play an important role in allowing species such as ginseng to respond to climate change, deer browse, overharvesting, and other environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号