首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic studies and large-scale sequencing experiments have revealed that the PIWI subfamily proteins and PIWI-interacting RNAs (piRNAs) play an important role in germ line development and transposon control. Biochemical studies in vitro have greatly contributed to the understanding of small interfering RNA (siRNA) and microRNA (miRNA) pathways. However, in vitro analyses of the piRNA pathway have been thus far quite challenging, because their expression is largely restricted to the germ line. Here we report that Bombyx mori ovary-derived cultured cell line, BmN4, endogenously expresses two PIWI subfamily proteins, silkworm Piwi (Siwi) and Ago3 (BmAgo3), and piRNAs associated with them. Siwi-bound piRNAs have a strong bias for uridine at their 5′ end and BmAgo3-bound piRNAs are enriched for adenine at position 10. In addition, Siwi preferentially binds antisense piRNAs, whereas BmAgo3 binds sense piRNAs. Moreover, we identified many pairs in which Siwi-bound antisense and BmAgo3-bound sense piRNAs are overlapped by precisely 10 nt at their 5′ ends. These signatures are known to be important for secondary piRNA biogenesis in other organisms. Taken together, BmN4 is a unique cell line in which both primary and secondary steps of piRNA biogenesis pathways are active. This cell line would provide useful tools for analysis of piRNA biogenesis and function.  相似文献   

2.
3.
Characterization of Argonaute family members in the silkworm,Bombyx mori   总被引:1,自引:0,他引:1  
Abstract The Argonaute protein family is a highly conserved group of proteins, which have been implicated in RNA silencing in both plants and animals. Here, four members of the Argonaute family were systemically identified based on the genome sequence of Bombyx mori. Based on their sequence similarity, BmAgo1 and BmAgo2 belong to the Ago subfamily, while BmAgo3 and BmPiwi are in the Piwi subfamily. Phylogenetic analysis reveals that silkworm Argonaute family members are conserved in insects. Conserved amino acid residues involved in recognition of the 5′ end of the small RNA guide strand and of the conserved (aspartate, aspartate and histidine [DDH]) motif present in their PIWI domains suggest that these four Argonaute family members may have conserved slicer activities. The results of microarray expression analysis show that there is a low expression level for B. mori Argonaute family members in different tissues and different developmental stages, except for BmPiwi. All four B. mori Argonaute family members are upregulated upon infection with B. mori nucleopolyhedrovirus. The complete coding sequence of BmPiwi, the homolog of Drosophila piwi, was cloned and its expression occurred mainly in the area where spermatogonia and spermatocytes appear. Our results provide an overview of the B. mori Argonaute family members and suggest that they may have multiple roles. In addition, this is also the first report, to our knowledge, of the response of RNA silencing machinery to DNA virus infection in insects.  相似文献   

4.
5.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

6.
7.
Previous study showed that exogenously applied recombinant thymosin from Bombyx mori (BmTHY) reduces B. mori nucleopolyhedrovirus (BmNPV) proliferation in silkworm. Which stands to reason that BmTHY in B. mori is crucial for the defense against BmNPV. However, little is known about the effect of endogenously overexpressed or repressed BmTHY on B. mori resistance to virus infection. To study this issue, we constructed an overexpression and inhibited expression systems of BmTHY in BmN cells. The viral titer and the analysis from the quantitative real‐time polymerase chain reaction (PCR) revealed that overexpression of BmTHY decreased the copies of BmNPV gene gp41, which goes over to inhibit the proliferation of BmNPV in BmN cells, while the inhibited expression of BmTHY significantly enhanced viral proliferation in infected BmN cells. These results indicated that endogenous BmTHY can inhibit BmNPV proliferation and replication in infected BmN cells. Furthermore, Co‐IP showed that BmTHY could bind to actin in BmN cells. Also, the overexpression or inhibited expression of BmTHY shifted the ratio of F/G‐actin in infected BmN cells. Lastly, the BmTHY, an actin‐interacting protein, might be one of the key host factors against BmNPV, which inhibits viral proliferation and replication in BmN cells.  相似文献   

8.
9.
Tudor-sn, a conserved nuclease, was first isolated from RNA-induced silencing complex (RISC) and was subsequently implicated in the RNA interference (RNAi) pathway in humans, flies and nematodes. However, in the silkworm, Bombyx mori L, the RNAi mechanism and the components of RISC were quite unclear. Here, we cloned the full-length cDNA of TUDOR-SN (BmTUDOR-SN) from the silkworm. Phylogenetic analysis revealed that BmTudor-sn had a high homology with Tudor-sn proteins in other insects. Fluorescent microscopic observation indicated that the subcellular localization of enhanced green fluorescent protein fused BmTudor-sn was mainly in the cytoplasm of silkworm BmN4 cells. Knockdown of BmTUDOR-SN did not, however, affect the RNAi efficiency in BmN4 cells.  相似文献   

10.
11.
12.
The telomeric nucleoprotein complex protects linear chromosome ends from degradation. In contrast to most eukaryotes in which telomerase is responsible for telomere elongation by adding short DNA repeats synthesized using an RNA template, the telomere elongation in Drosophila involves transposition of specialized telomeric retroelements onto chromosome ends. Proteins that bind telomeric and subtelomeric sequences form specific telomeric chromatin, and its components are highly conserved among organisms employing different mechanisms of telomere elongation. This review is focused on the analysis of components of the Drosophila telomeric complex and its comparison with telomeric proteins in telomerase-encoded organisms. Structural and functional analysis of Drosophila telomeres suggests that there are three distinct chromatin regions: protective structure at the very end of chromosome (cap), subtelomeric region which is characterized by condensed chromatin structure, and the terminal retrotransposon array whose expression is under the control of an RNAi (RNA interference)-based mechanism. The link between RNAi and telomeric chromatin formation in germinal tissues is discussed.  相似文献   

13.
RNA interference (RNAi) is a conserved mechanism that catalyzes sequence-specific gene silencing and has been used for loss-of-function genetic screens in many organisms. Here, we demonstrated that the expression of Caenorhabditis elegans SID-1 (CeSID-1) could trigger effective gene silencing in the cultured silkworm cell line, BmN4 (BmN4-SID1). Soaking the BmN4-SID1 in dsRNA corresponding to endogenous target genes induced a significant decrease of the amount of mRNA or protein. A small amount of dsRNA was enough to silence the target gene in a few days. Overexpression of CeSID-1 did not affect the cell viability. Our results suggest that BmN4-SID1 can be used in many applications in silkworm cells and will become a valuable resource for gene analysis.  相似文献   

14.
Class B scavenger receptors (SR‐Bs) are cell surface glycoproteins involved in various physiological processes in vivo, including the transport and metabolism of lipids, binding and phagocytosis of xenobiotics, and signaling. But little information is available about silkworm SR‐Bs; it is necessary to study these SR‐Bs for revealing their function. In this study, we cloned the full‐length coding sequence of BmSCRBQ4, a SR‐B gene from the silkworm Bombyx mori L. We found that the BmSCRBQ4 gene consists of nine exons and eight introns, with an open reading frame of 1371 bp encoding 456 amino acids. Gene expression studies determined that BmSCRBQ4 messenger RNA (mRNA) was expressed in unfertilized eggs, during embryonic development and throughout the majority of the larval period. Expression of mRNA was detected in the mid gut, middle silk gland, posterior silk gland, head, integumentum, fat body, testes and the ovaries of the larval B. mori Dazao strain, as well as in the silkworm cell lines BmN and BmE. Protein expression studies found BmSCRBQ4 protein was expressed only in the testes, fat body and middle silk gland of larvae, as well as in the silkworm cell lines BmN and BmE. The BmSCRBQ4 protein showed variability in banding patterns in different tissues and cells when analyzed by Western blotting. Immunohistochemical staining showed that the BmSCRBQ4 protein localizes to the constitutive membranes or cellular membranes of these tissues. These results indicated that BmSCRBQ4 gene may play some physiologically relevant roles at the cell surface in each tissue.  相似文献   

15.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   

16.
Bombyx mori is one of the key lepidopteran model species, and is economically important for silk production and proteinaceous drug expression. Baculovirus and insect host are important natural biological models for studying host–pathogen interactions. The impact of Bombyx mori nucleopolyhedrovirus (BmNPV) infection on the proteome and acetylome of Bombyx mori ovarian (BmN) cells are explored to facilitate a better understanding of infection‐driven interactions between BmNPV and host in vitro. The proteome and acetylome are profiled through six‐plex Tandem mass tag (TMT) labeling‐based quantitative proteomics. A total of 4194 host proteins are quantified, of which 33 are upregulated and 47 are downregulated in BmN cells at 36 h post‐infection. Based on the proteome, quantifiable differential Kac proteins are identified and functionally annotated to gene expression regulation, energy metabolism, substance synthesis, and metabolism after BmNPV infection. Altogether, 644 Kac sites in 431 host proteins and 39 Kac sites in 22 viral proteins are identified and quantified in infected BmN cells. Our study demonstrates that BmNPV infection globally impacts the proteome and acetylome of BmN cells. The viral proteins are also acetylated by the host acetyltransferase. Protein acetylation is essential for cellular self‐regulation and response to virus infection. This study provides new insights for understanding the host–virus interaction mechanisms, and the role of acetylation in BmN cellular response to viral infection.  相似文献   

17.
Endoglucanase is a part of cellulase which hydrolyzes cellulose into glucose. In this study, we cloned endoglucanase III (EG III) gene from Trichoderma viride strain AS 3.3711 using a PCR-based exon splicing method, and expressed EG III recombinant protein in both silkworm BmN cell line and silkworm larvae with an improved Bac-to-Bac/BmNPV mutant baculovirus expression system, which lacks the chiA and v-cath genes of Bombyx mori nucleopolyhedrovirus (BmNPV). The result showed that around 45 kDa protein was visualized in BmN cells at 48 h after the second generation recombinant mBacmid/BmNPV/EG III baculovirus infection. The enzymes from recombinant baculoviruses infected silkworms exhibited significant maximum enzyme activity at the environmental condition of pH 8.0 and temperature 50°C, and increased 20.94 and 19.13% compared with that from blank mBacmid/BmNPV baculoviruses infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 9.0 and at temperature range from 40 to 60°C. It provided a possibility to generate transgenic silkworms expressing bio-active cellulase, which can catabolize dietary fibers more efficiently, and it might be of great significance for sericulture industry.  相似文献   

18.
Bombyx mori nuclear polyhedrosis virus (BmNPV) baculovirus expression system (BES) has a lot of advantages such as high expression efficiency, convenience, and low feeding cost. In this report, we used a recently developed BmNPV bacmid, which could infect both B. mori cell lines and silkworm larvae. The results showed it takes only 7 to 10 days to generate recombinant baculovirus and permit the rapid isolation from small-scale cultures and then use it to transfect B. mori cell lines, compared to traditional homologous recombination method, which needs at least 40 days for multiple rounds of purification and amplification of viruses. Using this BES, we expressed a recombinant spider flagelliform protein in BmN cell line, which was around 37 kDa in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. The BmNPV bacmid system using silkworm would be very attractive for expression of target proteins.  相似文献   

19.
20.
The silkworm, Bombyx mori, was used to produce recombinant endo-β-glucanase II (rEGII). The EGII gene (egl2) was cloned from the cellulolytic fungus Trichoderma reesei and inserted into B. mori nucleopolyhedrovirus (BmNPV) genome using BmNPV/Bac-to-Bac expression vector. For expression of rEGII, both the BmN cells and B. mori larvae were infected with the recombinant virus. The putative rEGII yield was about 386 μg per larva and the enzyme activity of the purified rEGII was approx 352 U/mg of rEGII. The optimal activity of this purified protein was observed at 55°C and pH 4, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号