首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the cell wall of Streptococcus faecalis was studied in thin sections and freeze fractures of whole cells and partially purified wall fractions. Also, the structures of wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan wall polymers were compared with wall preparations that possess a full complement of accessory polymers. The appearance of the wall varied with the degree of hydration of preparations and physical removal of the cell membrane from the wall before study. Seen in freeze fractures of whole cells, the fully hydrated wall seemed to be a thick, largely amorphic layer. Breaking cells with beads caused the cell membrane to separate from the wall and transformed the wall from a predominantly amorphic layer to a structure seemingly made up of two rows of "cobblestones" enclosing a central channel of lower density. Dehydration of walls seemingly caused the cobblestones to be transformed into two bands which continued to be separated by a channel. This channel was also observed in isolated wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan polymers. These observations are consistent with the interpretation that both peptidogylcan and non-peptidoglycan polymers are concentrated at the outer and inner surfaces of cell walls. These observations are discussed in relation to possible models of wall structure and assembly.  相似文献   

2.
Subunit Cell Wall of Sulfolobus acidocaldarius   总被引:9,自引:6,他引:3       下载免费PDF全文
The cell wall of Sulfolobus acidocaldarius has been isolated. Cells were mechanically disrupted with a French press, and the cytoplasmic membrane was removed by extracting cell-envelope fragments with Triton X-100. The Triton-insoluble cell wall material retained the characteristic subunit structure when examined in the electron microscope. Isolated cell wall fragments formed in open sheets that were easily separated from cytoplasmic contamination. Chemical studies showed that the Triton-insoluble cell wall fragments consisted of lipoprotein with small amounts of carbohydrate and hexosamine. The amino acid composition indicated a highly charged hydrophobic cell surface. The presence of diaminopimelic acid with only traces of muramic acid indicates that the cell envelope does not have a rigid peptidoglycan layer. The results of chemical analyses and electron microscopy suggest a wall-membrane interaction stabilizing the cell envelope. The chemical and physical properties of this type of cell envelope would appear to form the basis for a new major division of bacteria with the definitive characteristics of a morphologically distinct subunit cell wall devoid of peptidoglycan.  相似文献   

3.
The cell wall of Streptomyces sp. MB-8 contains a major teichoic acid, viz., 1,3-poly(glycerol phosphate) substituted with N-acetyl-alpha-D-glucosamine (the degree of substitution is 60%), a minor teichoic acid, viz., non-substituted poly(glycerol phosphate), and a family of Kdn (3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid)-containing oligomers of the following general structure: [carbohydrate structure: see text]. The composition of the oligomers was established using MALDI-TOF mass spectroscopy. The present study provides the second example of the identification of Kdn as a component of cell wall polymers of streptomycetes, which are the causative agents of potato scab.  相似文献   

4.
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings.  相似文献   

5.
生物矿化一蜡状芽孢杆菌聚金作用的研究   总被引:1,自引:3,他引:1  
介绍了生物矿化-蜡状芽孢杆菌聚金作用原理.生物活动对矿石的风化、淋滤和沉积都有很大的影响.蜡状芽孢杆菌聚金作用主要与蜡状芽孢杆菌细胞壁的化学成分和结构功能有关.原因是其细胞壁有一层很厚的网状的肽聚糖、多糖、核酸和蛋白质结构,并且在细胞壁表面存在的磷壁酸质和糖醛酸磷壁酸质连接到网状的肽聚糖上.磷壁酸质的磷酸二脂和糖醛酸磷壁酸质的羧基使细胞壁带负电荷,具有离子交换的性质,能与溶液中带正电荷的金属离子进行交换反应.这些过程是蜡状芽孢杆菌细胞壁聚集金的主要作用机制.  相似文献   

6.
Extraction of a partially purified preparation of cell walls from Escherichia coli with the nonionic detergent Triton X-100 removed all cytoplasmic membrane contamination but did not affect the normal morphology of the cell wall. This Triton-treated preparation, termed the “Triton-insoluble cell wall,” contained all of the protein of the cell wall but only about half of the lipopolysaccharide and one-third of the phospholipid of the cell wall. This Triton-insoluble cell wall preparation was used as a starting material in an investigation of several further treatments. Reextraction of the Triton-insoluble cell wall with either Triton X-100 or ethylenediaminetetraacetic acid (EDTA) caused no further solubilization of protein. However, when the Triton-insoluble cell wall was extracted with a combination of Triton X-100 and EDTA, about half of the protein and all of the remaining lipopolysaccharide and phospholipid were solubilized. The material which remained insoluble after this combined Triton and EDTA extraction still retained some of the morphological features of the intact cell wall. Treatment of the Triton-insoluble cell wall with lysozyme resulted in a destruction of the peptidoglycan layer as seen in the electron microscope and in a release of diaminopimelic acid from the cell wall but did not solubilize any cell wall protein. Extraction of this lysozyme-treated preparation with a combination of Triton X-100 and EDTA again solubilized about half of the cell wall protein but resulted in a drastic change in the morphology of the Triton-EDTA-insoluble material. After this treatment, the insoluble material formed lamellar structures. These results are interpreted in terms of the types of noncovalent bonds involved in maintaining the organized structure of the cell wall and suggest that the main forces involved are hydrophobic protein-protein interactions between the cell wall proteins and to a lesser degree a stabilization of protein-protein and protein-lipopolysaccharide interactions by divalent cations. A model for the structure of the E. coli cell wall is presented.  相似文献   

7.
本文的研究目的是探索稀土离子Nd^3+对金黄色葡萄球菌细胞壁结构的影响作用。采用透射电镜、氨基酸自动分析仪和红外光普法等检测手段,提出了Nd^3+可使金黄色葡萄球菌细胞壁的形态和结构发生改变;低于抑菌浓度的NdCl3对金黄色葡萄球菌细胞壁的古成具有促进作用:高浓度(指杀菌浓度和抑菌浓度)Nd^3+可断裂细胞壁中肽聚糖的大部分肽键和氢键,致使细胞壁中肽聚糖的交联网状结构被破坏。  相似文献   

8.
The composition of cell walls was comparatively studied in Streptomyces roseoflavus var. roseofungini 1128 and in its variant 1-68. In the logarithmic phase of growth, the content of teichoic acid in the cell wall of the parent culture was four times as high as in the cell wall of the variant. The cell walls of the parent culture contained 5 to 7 times more O-lysyl residues not only due to a higher content of teichoic acid in the walls but also owing to a lower content of lysyl groups in the teichoic acid of the variant. An additional polysaccharide comprising galactose and glucosamine was found in the cell wall of the variant but not in the parent strain. The peptidoglycan of the both cultures had a structure typical of Streptomyces spp.; its content in the cell walls of the two cultures was identical (ca. 50% of the dry cell wall biomass weight). The results are discussed in connection with the peculiarities of the variant hyphal septation.  相似文献   

9.
An immunologically active teichoic acid component was isolated from the cell wall of Listeria monocytogenes strain EGD. The teichoic acid component, accounting for about 20% of the weight of cell wall, contained N-acetylglucosamine, rhamnose, ribitol, and phosphorus in a molar ratio of 0.95 : 1.0 : 0.97 : 0.98. The molecular weight of the teichoic acid chain was about 120,000 as analyzed by gel filtration. The probable structure was deduced from the results of methylation analysis, Smith degradation, and proton magnetic resonance spectrometry of the teichoic acid, together with the characterization of fragments obtained by treatment with hydrofluoric acid, as follows: (formula; see text) Inhibition testing with monosaccharide and fragments obtained from HF treatment of Listeria teichoic acid in the quantitative precipitin reaction suggested that the rhamnose residue is a major antigenic determinant.  相似文献   

10.
A Umeda  Y Ueki    K Amako 《Journal of bacteriology》1987,169(6):2482-2487
The fine structure of the Staphylococcus aureus cell wall was determined by electron microscopy with the new technique of rapid freezing and substitution fixation. The surface of the cell wall was covered with a fuzzy coat which consisted of fine fibers or an electron-dense mass. Morphological examination of the cell wall, which was treated sequentially with sodium dodecyl sulfate, trypsin, and trichloroacetic acid, revealed that this coat was partially removed by trypsin digestion and was completely removed by trichloroacetic acid extraction but was not affected by sodium dodecyl sulfate treatment, suggesting that the fuzzy coat consists mostly of a complex of teichoic acids and proteins. This was confirmed by the application of the concanavalin A-ferritin technique for teichoic acid and antiferritin immunoglobulin G technique for protein A.  相似文献   

11.
1. The yeast Hansenula holstii NCYC 560 produced invertase and an inducible acid phosphatase located betweent the cytoplasmic membrane and the yeast cell wall. 2. These enzymes were also found in the culture medium outside the cell boundaries. 3. The amount of cell wall mannan in cells grown in phosphate-limited medium decreased in comparison with that of cells grown in phospahte-rich medium. 4. It is proposed that the mannan in this yeast is a loose and highly permeable structure, allowing external enzymes to leave the cell boundaries.  相似文献   

12.
Crystal structure of plant pectin methylesterase   总被引:6,自引:0,他引:6  
Pectin is a principal component in the primary cell wall of plants. During cell development, pectin is modified by pectin methylesterases to give different properties to the cell wall. This report describes the first crystal structure of a plant pectin methylesterase. The beta-helical structure embodies a central cleft, lined by several aromatic residues, that has been deduced to be suitable for pectin binding. The active site is found at the center of this cleft where Asp157 is suggested to act as the nucleophile, Asp136 as an acid/base and Gln113/Gln135 to form an anion hole to stabilize the transition state.  相似文献   

13.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the "Streptomyces griseoviridis" phenetic cluster: Streptomyces daghestanicus and Streptomyces murinus. S. daghestanicus VKM Ac-1722T contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had alpha-rhamnopyranose and 3-O-methyl-alpha-rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was is a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)-beta-D-glucopyranosyl-(1 --> 2)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the "Streptomyces griseoviridis" phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.  相似文献   

14.
Boron in plant cell walls   总被引:26,自引:0,他引:26  
Matoh  Toru 《Plant and Soil》1997,193(1-2):59-70
Boron is an essential element for higher plants, yet the primary functions remain unclear. In intact tissues of higher plants, this element occurs as both water soluble and water insoluble forms. In this review, the intracellular localisation of B and possible function of B in cell walls of higher plants are discussed. The majority of the water soluble B seems to be localised in the apoplastic region as boric acid. The water insoluble B is associated with rhamnogalacturonan II (RG-II) and the complex is ubiquitous in higher plants. In the Brassicaceae, Apiaceae, Chenopodiaceae, Asteraceae, Amaryllidaceae, and Liliaceae, nearly all the cell wall B is associated with RG-II, while in the Cucurbitaceae, only half of the cell wall B is in this complex. In duckweed, a different type of B-polysaccharide complex has been identified.Analysis of the structure of the B–RG-II complex reveals that the complex is composed of boric acid and two chains of monomeric RG-II. Boric acid does not merely bind to sugars but crosslinks two chains of pectic polysaccharide at the RG-II region through borate-diester bonding, thus forming a network of pectic polysaccharides in cell walls. The B–RG-II complex is reconstituted in vitro only by mixing monomeric RG-II and boric acid at pH 4.0. In the in vitro reconstitution, germanic acid can substitute for boric acid to some extent. The RG-II epitope, which cross reacts with the antibody toward the B-RG-II complex, is detected in walls of every cell in radish roots. The epitope is also detected in growing pollen tube cell walls, which are claimed to require B.Whilst it is now clear that boric acid links some cell wall components, it is not yet clear whether there is a structural requirement for B in cell wall function.  相似文献   

15.
Young, Frank E. (Western Reserve University, Cleveland, Ohio). Fractionation and partial characterization of the products of autolysis of cell walls of Bacillus subtilis. J. Bacteriol. 92:839-846. 1966.-Autolysis of the cell wall of Bacillus subtilis by an indigenous autolytic enzyme results in solubilization of 90% of the cell wall. The solubilized cell wall (supernatant fraction) was fractionated by the combination of ion-exchange chromatography on diethylaminoethyl cellulose and gel filtration on Sephadex G-25 into polysaccharides (composed of N-acyl glucosamine and N-acyl muramic acid), mucopeptides, peptides, and teichoic acid. The chemical composition of the products of autolysis confirms the proposed mechanism of autolysis and establishes the autolytic enzyme as an N-acyl muramyl-l-alanine amidase. The heteropolymers in the cell wall are linked by peptide bridges. Two peptides which account for 70% of the peptides of the cell wall have a molar ratio of 1.0:0.9:1.3 for diaminopimelic acid, glutamic acid, and alanine, respectively. Other minor peptides contain diaminopimelic acid, glutamic acid, and alanine in molar ratios of 1.0:0.9:1.5, 1.0:0.5:1.0, and 1.0:1.5:1.7, respectively. The procedures employed in this study should be applicable to the fractionation of heteropolymers in cell walls of other gram-positive organisms and thereby aid in the study of the structure of antigenic determinants and endotoxins.  相似文献   

16.
17.
The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists of an insoluble, hydroxyproline-rich glycoprotein framework and several chaotrope-soluble, hydroxyproline-containing glycoproteins. Up to now, there have been no data concerning the amino acid sequences of the hydroxyproline-containing polypeptides of the insoluble wall fraction. Matrix-assisted laser desorption ionization time-of-flight analyses of peptides released from the insoluble cell wall fraction by trypsin treatment revealed the presence of 14 peptide fragments that could be attributed to non-glycosylated domains of the chaotrope-soluble cell wall glycoprotein GP2. However, these peptides cover only 15% of the GP2 polypeptide backbone. Considerably more information concerning the presence of GP2 in the insoluble cell wall fraction was obtained by an immunochemical approach. For this purpose, 407 overlapping pentadecapeptides covering the whole known amino acid sequence of GP2 were chemically synthesized and probed with a polyclonal antibody raised against the deglycosylated, insoluble cell wall fraction. This particular antibody reacted with 297 of the 407 GP2-derived peptides. The peptides that were recognized by this antibody are distributed over the whole known GP2 sequence. The epitopes recognized by polyclonal antibodies raised against the 64- and 45-kDa constituents purified from the deglycosylation products of the insoluble cell wall fraction are also distributed over the whole GP2 backbone, although the corresponding antigens are considerably smaller than GP2. The significance of the latter results for the structure of the insoluble cell wall fraction is discussed.  相似文献   

18.
Cord factor (trehalose 6,6'-dimycolate, CF) is a glycolipid located in the outer mycobacterial cell wall that is implicated in the pathogenesis of mycobacteria. Furthermore, CF is a convenient model for studying mycolic acid residues, the major lipid constituents of the mycobacterial cell wall that are believed to form a barrier against drug penetration. The surface properties of CF and its interactions with phosphatidylinositol (PI) have been investigated using the monolayer technique. During compression/expansion/recompression cycles, CF monolayers switch from a loosely packed to a more tightly packed structure. The change in surface properties suggests a molecular rearrangement, perhaps involving interdigitation of long and short chains of the CF molecules. In CF-PI monolayers, maximal lateral packing density occurs between 0.5 and 0.7 mole fraction CF, which is close to the relative composition of mycolic acid residues and shorter-chain lipids in the mycobacterial cell wall. Low concentrations of CF increase the order in PI monolayers, consistent with CF toxicity involving rigidification of cell membranes.  相似文献   

19.
The purified red yeast cell wall lytic enzyme of Penicillium lilacinum No. 2093 has a potent saccharifying activity against cell walls, but the living cell lytic activity of it is considerably lower than that of the culture filtrate. Therefore, the living cell lytic factors in the culture filtrate were examined. The alkaline protease of Pen. lilacinum played an important role for living cell lysis. The synergistic effect on living cell lysis was also detected, when acid proteases from various origins were combined with the cell wall lytic enzyme. These results indicated that the protein layers of red yeast cell surface inhibited the action of a glycanase,cell wall lytic enzyme, and the protein molecule contributed to retain the rigid structure of the wall.  相似文献   

20.
The release of polysaccharide from the plant cell wall is a key process to release the stored energy from plant biomass. Within the ruminant digestive system, a host of commensal microorganisms speed the breakdown of plant cell matter releasing fermentable sugars. The presence of phenolic compounds, most notably ferulic acid (FA), esterified within the cell wall is thought to pose a significant impediment to the degradation of the plant cell wall. The structure of a FA esterase from the ruminant bacterium Butyrivibrio proteoclasticus has been determined in two different space groups, in both the apo‐form, and the ligand bound form with FA located in the active site. The structure reveals a new lid domain that has no structural homologues in the PDB. The flexibility of the lid domain is evident by the presence of three different conformations adopted by different molecules in the crystals. In the FA‐bound structures, these conformations show sequential binding and closing of the lid domain over the substrate. Enzymatic activity assays demonstrate a broad activity against plant‐derived hemicellulose, releasing at least four aromatic compounds including FA, coumaric acid, coumarin‐3‐carboxylic acid, and cinnamic acid. The rumen is a complex ecosystem that efficiently degrades plant biomass and the genome of B. proteoclasticus contains greater than 130 enzymes, which are potentially involved in this process of which Est1E is the first to be well characterized. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号