首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

2.
A phylogeny was reconstructed for four species belonging to the Neotropical Anopheles (Nyssorhynchus) albitarsis complex using partial sequences from the mitochondrial cytochrome oxidase I (COI) and NADH dehydrogenase 4 (ND4) genes and the ribosomal DNA ITS2 and D2 expansion region of the 28S subunit. The basis for initial characterization of each member of the complex was by correlated random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers. Analyses were carried out with and without an outgroup (An.(Nys.) argyritarsis Robineau-Desvoidy) by using maximum parsimony, maximum likelihood, and Bayesian methods. A total evidence approach without the outgroup, using separate models for "fast" (COI and ND4 position 3) and "slow" (rDNA ITS2 and D2, and COI and ND4 position 1) partitions, gave the best supported topology, showing close relationships of An. albitarsis Lynch-Arribálzaga to An. albitarsis B and An. marajoara Galv?o & Damasceno to An. deaneorum Rosa-Freitas. Analyses with the outgroup included showed poorer support, possibly because of a long branch attraction effect caused by a divergent outgroup, which caused one of the An. marajoara specimens to cluster with An. deaneorum in some analyses. The relationship of the above-mentioned result to a separately proposed hypothesis suggesting a fifth species in the complex is discussed.  相似文献   

3.
The aim of this study was to develop chitosan-coated and polyplex-loaded liposomes (PLLs) containing DNA vaccine for Peyer’s patch targeting. Plain liposomes carrying plasmid pRc/CMV-HBs were prepared by the reverse-phase evaporation method. Chitosan coating was carried out by incubation of the liposomal suspensions with chitosan solution. Main lipid components of liposomes were phosphatidylcholine/cholesterol. Sodium deoxycholate and dicetyl phosphate were used as negative charge inducers. The zeta potentials of plain liposomes were strongly affected by the pH of the medium. Coating with chitosan variably increased the surface charges of the liposomes. To increase the zeta potential and stability of the liposome, chitosan was also used as a DNA condensing agent to form a polyplex. The PLLs were coated with chitosan solution. In vivo study of PLLs was carried out in comparison with chitosan-coated liposomes using plasmid encoding green fluorescence protein as a reporter. A single dose of plasmid equal to 100 μg was intragastrically inoculated into BALB/c mice. The expression of green fluorescence protein (GFP) was detected after 24 h using a confocal laser scanning microscope. The signal of GFP was obtained from positively charged chitosan-coated liposomes but found only at the upper part of duodenum. With chitosan-coated PLL540, the signal of GFP was found throughout the intestine. Chitosan-coated PLL demonstrated a higher potential to deliver the DNA to the distal intestine than the chitosan-coated liposomes due to the increase in permanent positive surface charges and the decreased enzymatic degradation.  相似文献   

4.
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.  相似文献   

5.
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.  相似文献   

6.
Investigations that are being carried out in various laboratories including ours clearly provide the answer which is in the negative. Only the direct evidences obtained in this laboratory will be presented and discussed. It has been unequivocally shown that the interaction between 16S and 23S RNAs plays the primary role in the association of ribosomal subunits. Further, 23S RNA is responsible for the Binding of 5S RNA to 16S.23S RNA complex with the help of three ribosomal proteins, L5, L18, L15/L25. The 16S.23S RNA complex is also capable of carrying out the following ribosomal functions, although to small but significant extents, with the help of a very limited number of ribosomal proteins and the factors involved in protein synthesis: (a) poly U-Binding, (B) poly U-dependent Binding of phenylalanyl tRNA, (c) EF-G-dependent GTPase activity, (d) initiation complex formation, (e) peptidyl transferase activity (puromycin reaction) and (f) polyphenylalanine synthesis. These results clearly indicate the direct involvement of rRNAs in the various steps of protein synthesis. Very recently it has Been demonstrated that the conformational change of 23S RNA is responsible for the translocation of peptidyl tRNA from the aminoacyl (A) site to the peptidyl (P) site. A model has Been proposed for translocation on the Basis of direct experimental evidences. The new concept that ribosomal RNAs are the functional components in ribosomes and proteins act as control switches may eventually turn out to Be noncontroversial.  相似文献   

7.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

8.
Precise normalization with reference genes is necessary, in order to obtain reliable relative expression data in response to gastrointestinal nematode infection. By using sheep from temperate regions as models, three reference genes, viz., ribosomal protein LO (RPLO), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and succinate dehydrogenase complex subunit A (SDHA), were investigated in the abomasum, abomasal lymph nodes and small intestine of Brazilian Somalis sheep, either resistant or susceptible to gastrointestinal nematodes infections. Real time PCR was carried out by using SYBR Green I dye, and gene stability was tested by geNorm. RPLO was an ideal reference gene, since its expression was constant across treatments, presented lower variation, and was ranked as the most stable in abomasum and lymph node tissues. On the other hand, SDHA was the most stable in the small intestine followed by RPLO and GAPDH. These findings demonstrate the importance of correctly choosing reference genes prior to relative quantification. In addition, we determined that reference genes used in sheep from temperate regions, when properly tested, can be applied in animals from tropical regions such as the Brazilian Somalis sheep.  相似文献   

9.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

10.
The protozoan Trypanosoma evansi is described as presenting high morphological and genetic similarities among the isolates despite its biological heterogeneity and wide geographical distribution. PCR amplification of the internal transcribed spacers of the ribosomal gene in combination with the coding region of the 5.8S ribosomal subunit further submitted to restriction enzymes digestion were carried out in DNAs extracted from 41 T. evansi strains isolated from horses, dogs, coatis and capybaras from two distinct regions of the Brazilian Pantanal. We also used one T. evansi isolate from Africa, one from Asia and one isolate of T. b. brucei from Africa. Analysis of the RFLP profiles yielded a unique "riboprinting" that does not vary intraspecifically. These results provide insights on the ribosomal gene organization of T. evansi and showed that ITS analysis by RFLP show high genetic similarity of this locus among isolates of this protozoan parasite.  相似文献   

11.
12.
The present study was undertaken to examine the structural features that may be important to explain the immunogenicity of the (110–121) peptide sequence (FWRGDLVFDFQV) of VP3 capsid protein of hepatitis A virus. A conformational analysis of the preferred conformations by CD and molecular mechanics was carried out. Present results suggest that the interaction with liposomes as biomembrane model induces and stabilizes the amphipathic β-structure of the peptide. To study the contribution of amino acid replacements at the RGD tripeptide as well as the influence of the peptide chain length on peptide conformation, solid-phase peptide synthesis of several peptide analogs was carried out and the peptide conformation was studied using CD spectroscopy. The results show that the RGD sequence is necessary to induce the β-structure in the presence of liposomes. © 1998 John Wiley & Sons, Inc. Biopoly 45: 479–492, 1998  相似文献   

13.
K Bundo-Morita  S Gibson  J Lenard 《Biochemistry》1987,26(19):6223-6227
The target sizes associated with fusion and hemolysis carried out by Sendai virus envelope glycoproteins were determined by radiation inactivation analysis. The target size for influenza virus mediated fusion with erythrocyte ghosts at pH 5.0 was also determined for comparison; a value of 57 +/- 15 kDa was found, indistinguishable from that reported previously for influenza-mediated fusion of cardiolipin liposomes [Gibson, S., Jung, C. Y., Takahashi, M., & Lenard, J. (1986) Biochemistry 25, 6264-6268]. Sendai-mediated fusion with erythrocyte ghosts at pH 7.0 was likewise inactivated exponentially with increasing radiation dose, yielding a target size of 60 +/- 6 kDa, a value consistent with the molecular weight of a single F-protein molecule. The inactivation curve for Sendai-mediated fusion with cardiolipin liposomes at pH 7.0, however, was more complex. Assuming a "multiple target-single hit" model, the target consisted of 2-3 units of ca. 60 kDa each. A similar target was seen if the liposomes contained 10% gangliosides or if the reaction was measured at pH 5.0, suggesting that fusion occurred by the same mechanism at high and low pH. A target size of 261 +/- 48 kDa was found for Sendai-induced hemolysis, in contrast with influenza, which had a more complex target size for this activity (Gibson et al., 1986). Sendai virus fusion thus occurs by different mechanisms depending upon the nature of the target membrane, since it is mediated by different functional units. Hemolysis is mediated by a functional unit different from that associated with erythrocyte ghost fusion or with cardiolipin liposome fusion.  相似文献   

14.
Vaccine entrapment in liposomes.   总被引:2,自引:0,他引:2  
The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.  相似文献   

15.
A new and improved system for targeted gene delivery and expression is described. Transfection efficiency of N-terminal modified poly(L-lysine) (NPLL) conjugated with anti-thrombomodulin antibody 34A can be improved by adding to the system a lipophilic component, cationic liposomes. DNA, antibody conjugate and cationic liposomes form a ternary electrostatic complex which preserves the ability to bind specifically to the target cells. At the same time the addition of liposomes enhance the specific transfection efficiency of antibody-polylysine/DNA binary complex by 10 to 20-fold in mouse lung endothelial cells in culture.  相似文献   

16.
G Glaser  L Enquist  M Cashel 《Gene》1977,2(3-4):159-172
The expression of the ribosomal RNA gene carried by the lambda transducing phage lambdarifd18 is shown to be subject to stringent amino acid control. lambdarifd18 DNA was digested with endonuclease EcoRI and ligated to similarly restricted ColE1 plasmid DNA. Selection for expression of lambda integration and excision gene activity carried by the same DNA fragment results in cloning of the promoter proximal portion of the 16S ribosomal RNA gene. The resulting chemera expresses lambda integration and excision functions as well as encoding the promoter proximal half of a 16S ribosomal RNA gene.  相似文献   

17.
In this work, the tumor suppressor gene p16 was efficiently transferred into FR cells isolated from a patient with malignant mesothelioma using cationic liposomes prepared from trimethyl aminoethane carbamoyl cholesterol (TMAEC-Chol) and triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol). This transfer was performed after preliminary assays were undertaken to find the optimal transfection conditions. Results showed that an efficient transfer of plasmids containing the reporter gene pCMV-beta galactosidase vectorized by TMAEC-Chol/DOPE and TEAPC-Chol/DOPE liposomes into mesothelioma FR cells was obtained as assessed by luminometric measurements of beta-galactosidase activity. Cytotoxicity studied by MTT test showed that at concentrations used for this study, the cationic liposomes have no effect on cell growth. Transfer into mesothelioma FR cells of a plasmid construct containing the tumor suppressor gene p16 was carried out with these liposomes. Western blotting and immunofluorescence showed the presence of p16 in treated cells. An inhibition of cell growth was observed, indicating that efficient tumor suppressor gene transfer can be performed by using cationic liposomes.  相似文献   

18.
We have studied the binding of liposomes containing dinitrophenylated lipid to rat basophil leukemia cells armed with monoclonal anti-dinitrophenyl IgE. The liposomes were either "fluid" at 37 degrees C (dimyristoylphosphatidylcholine or an equimolar binary mixture dipalmitoylphosphatidylcholine and cholesterol) or "solid" (dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, or dibehanoylphosphatidylcholine). We have also studied the immune mediated degranulation of these cells induced by the above lipid membrane targets. In some cases both studies were carried out with liposomes containing various surface densities of lipid haptens. From these studies we conclude that freely mobile nonaggregated lipid haptens in bilayer membrane targets can trigger efficient serotonin release from rat basophil leukemia cells in the presence of specific antihapten IgE. Solid target membranes are also effective as stimulators of serotonin release. The release of serotonin depends strongly on the surface density of lipid haptens over a narrow range of surface densities. These studies with lipid membrane targets having well defined physical properties indicate the need for generalized molecular models of receptor-mediated cell triggering.  相似文献   

19.
Trypsin purification by affinity binding to small unilamellar liposomes   总被引:3,自引:0,他引:3  
A novel protein purification process using affinity-ligand-modified liposomes and membrane ultrafiltration is described. The feasibility of the process was tested using trypsin as the model protein and p-aminobenzamidine (PAB) as the affinity ligand for trypsin. The affinity liposomes were prepared by covalently attaching PAB to the surface of small unilamellar liposomes via the hydrophilic spacer arm diglycolic acid. The liposomes were comprised of dimyristoyl phosphatidyl choline, cholesterol, and dimyristoyl phosphatidyl ethanolamine to which the diglycolic acid was attached. The equilibrium binding constant between trypsin and immobilized PAB was shown to be dependent on the PAB density of the liposome surface. Bound trypsin was eluted from the liposomes by the trypsin inhibitor benzamidine. Trypsin was purified from a trypsin/chymotrypsin mixture and from one of its naturally occurring sources, porcine pancreatic extract. A recovery yield from the crude mixture of 68% was obtained with a trypsin purity of 98%. The affinity-modified liposomes were stable in the complex mixture and retained their trypsin binding capacity after multiple adsorption/elution cycles over a 30-day period.  相似文献   

20.
The ternary Ac-[3H]Phe-tRNA-poly(U)-ribosome complex (complex C) [D. L. Kalpaxis, D.A. Theocharis, and C. Coutsogeorgopoulos (1986) Eur. J. Biochem. 154, 267-271] was used in model experiments aiming at the purification of this complex via adsorption on cellulose nitrate membranes and then desorbing the complex back into solution. The desorption was carried out at pH 7.2 in the presence of the nonionic detergent Zwittergent (ZW). The activity status of complex C was assessed with the aid of the puromycin reaction which characterizes ribosomal peptidyltransferase as part of complex C. The optimal conditions for desorbing complex C were 5 degrees C and a buffered solution containing 0.1% ZW. The kinetic constants of peptidyltransferase in the adsorbed state were kcat = 2.0 min-1, Ks = 0.4 mM. In the desorbed state, in solution, kcat = 3.4 min-1 and Ks = 0.3 mM. The method promises to be suitable for the rapid purification of ribosomal complexes containing mRNA and aminoacyl-tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号