首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
T-钙粘附素是钙粘附素家族中的一个特殊成员,缺乏跨膜区和胞浆区,是通过糖基磷脂酰肌醇附着于细胞膜上.T-钙粘附素的异常表达参与到多种肿瘤的发生发展过程中,如肿瘤细胞的凋亡、增殖、侵袭和转移等过程.T-钙粘附素还可能参与肿瘤新生血管的形成和胞内外的信号传导过程.本文就T 钙粘附素在肿瘤发生发展过程中的作用及分子机制作一综述,该蛋白有可能成为肿瘤治疗的新靶点.  相似文献   

2.
C a dh er in -1 基因与成骨分化   总被引:1,自引:0,他引:1       下载免费PDF全文
钙粘附蛋白-11(Cadherin-11)属于Ⅱ型钙粘附蛋白,是一种钙离子依赖性介导嗜同性细胞-细胞间粘附的跨膜糖蛋白。该种钙粘附蛋白在胚胎发育的肢节形成、骨组织形成、肿瘤浸润转移及细胞信号转导等方面具有多种生物学功能。本文就其基因结构、蛋白结构、连接特性和识别特异性、表达调控以及通过细胞-细胞粘附对间充质干细胞的成骨细胞方向分化和在骨形成中的作用进行综述。  相似文献   

3.
Liu Y  Li WQ  Wang Y 《生理科学进展》2010,41(2):117-120
神经型钙粘素(N-cadherin)作为经典钙粘素家族的一员,是钙离子依赖的细胞连接中的一种重要跨膜成分,而其作为神经突触的粘附受体不仅为跨突触的细胞骨架提供了形式上的连接,还成为了功能上沟通突触前后膜的桥梁,传递粘附信号并调节突触的发育和成熟突触的可塑性。本文主要就后者讨论N-cadherin参与的成熟突触形态和功能的变化及调节中的新近进展,并试从粘附作用与信号传递两方面,分别从粘附作用的建立和调节,跨膜、跨突触,以及胞内信号传递,来分析N-cadherin对成熟突触的作用。可以看出,粘附是基础,信号传递是建立在其上的功能,并受粘附的调节。二者相互联系,协调作用。粘附的建立需通过信号传递与细胞骨架沟通,而粘附反过来又成为信号传递通路的起始信号,从而共同介导突触的形态和功能的变化及重塑。  相似文献   

4.
γ-连环素(γ-catenin,γ-cat)是实质细胞粘附连接处钙粘附素(cadherin,cd)/连环素复合体的胞内组成部分,同时还是桥粒的组成成份之一。近年发现,γ-cat同时还是一种癌基因,并参与wnt信号传导通路,介导粘附连接与桥粒之间的交流等。本文对γ-cat的生物学特性及其功能作一综述。  相似文献   

5.
E-钙粘素是在胚胎发育中最早表达的分子之一,它可以与Catenin家族成员形成钙粘素/Catenin复合物参与多种细胞功能,对于胚胎植入和胎盘发生具有重要作用.通过RT-PCR、免疫组织化学、细胞粘附分析等方法,在人正常妊娠和输卵管妊娠母胎界面上,发现E-钙粘素主要定位于绒毛细胞滋养层细胞和滋养层细胞柱,从滋养层细胞柱近端向远端,其蛋白质水平逐渐降低.正常胎盘组织中E-钙粘素水平在妊娠早期较高,妊娠中期直至分娩期均维持低水平.在体外培养的人正常胎盘细胞滋养层细胞系(NPC细胞)中,转化生长因子β(TGFβ1)显著上调E-钙粘素蛋白和mRNA的表达,并呈现时间和剂量依赖性,同时,TGFβ1促进NPC细胞之间的粘附.上述结果表明,胎盘中存在E-钙粘素的旁分泌调节机制,E-钙粘素可通过调节滋养层细胞粘附而参与细胞侵润的有节制调控.  相似文献   

6.
李超波  胡丽丽  王振东  钟淑琦  雷蕾 《遗传》2009,31(12):1177-1184
植入前小鼠胚胎的发育事件包括第一次卵裂、胚胎基因组激活、桑椹胚致密、囊胚形成。小鼠受精卵胚胎的致密化发生在8-细胞阶段晚期, 致密过程中, 胚胎卵裂球本身以及卵裂球之间发生了一系列的变化。这些变化包括卵裂球微绒毛以及胞质成分的极性化分布, 卵裂球之间形成特殊的胞间连接。致密化是哺乳动物胚胎发育过程中的第一个细胞分化事件, 即导致了内细胞团以及滋养外胚层的产生。植入后, 内细胞团将发育成为胚体, 滋养外胚层将发育成为胎盘等胚外组织。细胞粘附分子E-cadherin介导的胞间粘附起始了致密化。卵裂球发生粘附所需的组分在致密前已经存在, 但是直至8-细胞阶段晚期连接复合体才表现出明显的粘附活性。敲除E-cadherin基因, 发现母源性的E-cadherin足以介导致密。E-cadherin介导的胞间粘附是细胞粘附的第一步。文章综述了E-cadherin介导胞间粘附的具体过程以及蛋白激酶C(Protein kinase C, PKC)调控该过程的相关 机制。  相似文献   

7.
植物钙吸收、转运及代谢的生理和分子机制   总被引:6,自引:0,他引:6  
周卫  汪洪 《植物学通报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少,导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱,导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收,而果实则可通过非维管束组织直接吸收钙素。Ca2 通过Ca2 通道内流进入胞质,并通过Ca2 -ATPase和Ca2 /H 反向转运蛋白外流以保持胞质内低Ca2 浓度。为了应对植物发育和环境胁迫信号,Ca2 由质膜、液泡膜和内质网膜的Ca2 通道内流进入胞质,导致胞质Ca2 浓度迅速增加,产生钙瞬变和钙振荡,传递到钙信号靶蛋白,如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白,引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展,包括植物对钙的需求和作物缺钙的原因,根系维管束组织及果实钙素吸收机理,Ca2 跨膜运输特性,钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

8.
细菌粘附素的分子结构和装配机制   总被引:7,自引:0,他引:7  
细菌感染的第一步是必须粘附于易感细胞,以获得立足点,在局部繁殖,释放毒素和酶类损坏组织,导致感染,细菌的粘附作用主要靠粘附素特异的识别结合到宿主细胞的受体,使细胞在局部定居,本文主要综述菌毛粘附素的分子结构及其因控制,菌毛粘附素如何通过四种典型途径装配,以及参与装配的蛋白质是如何协调功能的研究进展。  相似文献   

9.
幽门螺杆粘附于胃黏膜是其进一步发挥致病作用的前提,本文从幽门螺杆菌的粘附素、粘附素相关受体、粘附于胃上皮细胞的病毒机制以及粘附素在粘附素在该菌疫苗构建中的作用对其粘附机制的研究进展作一综述。。  相似文献   

10.
植物钙吸收、转运及代谢的生理和分子机制   总被引:3,自引:0,他引:3  
周卫  汪洪 《植物学报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少, 导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱, 导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收, 而果实则可通过非维管束组织直接吸收钙素。Ca2+通过Ca2+通道内流进入胞质, 并通过Ca2+-ATPase 和Ca2+/H+反向转运蛋白外流以保持胞质内低Ca2+浓度。为了应对植物发育和环境胁迫信号, Ca2+由质膜、液泡膜和内质网膜的Ca2+通道内流进入胞质, 导致胞质Ca2+浓度迅速增加, 产生钙瞬变和钙振荡, 传递到钙信号靶蛋白, 如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白, 引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展, 包括植物对钙的需求和作物缺钙的原因, 根系维管束组织及果实钙素吸收机理, Ca2+跨膜运输特性, 钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号