首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank.  相似文献   

2.
Alcohol dehydrogenase has been purified from the cell-free preparation of Thermoanaerobium brockii to homogeneity, employing combined DEAE, Sephadex, and affinity chromatographic procedures. The enzyme is tetrameric having subunit molecular weight of 40.4 x 10(3). The purified alcohol dehydrogenase is capable of utilizing either NAD+ or NADP+ to oxidize primary and secondary alcohols, although it prefers NADP+ as the coenzyme and secondary alcohols as substrates. Inactivation of the enzymic activity by sensitized photooxidation and carboxymethylation implicates the presence of catalytically important histidine and cysteine residues. Kinetic studies indicate that Thermoanaerobium alcohol dehydrogenase catalyzes NADP(+)-linked oxidations of secondary alcohols by an ordered bi-bi mechanism with NADP+ as the leading reactant. The preference of the Thermoanaerobium enzyme for NADP+ is correlated with its low dissociation constants (KA and KiA) and high turnover rate (V/Et). The corresponding kinetic parameters also contribute to the preference of this enzyme for secondary alcohols.  相似文献   

3.
In Sm. lipolytica one NAD+-dependent and three NADP+-dependent alcohol dehydrogenases are detectable by polyacrylamide gelelectrophoresis. The NAD+-dependent ADH (ADH I), with a molecular weight of 240,000 daltons, reacts more intensively with long-chain alcohols (octanol) than with short-chain alcohols (methanol, ethanol). The ADH I is not or only minimally subject to glucose repression. Besides the ADH I band no additional inducible NAD+-dependent ADH band is gel-electrophoretically detectable during growth of yeast cells in medium containing ethanol or paraffin. The ADH I band is very probably formed by two ADH enzymes with the same electrophoretic mobility. The NADP+-dependent alcohol dehydrogenases (ADH II--IV) react with methanol, ethanol and octanol with different intensity. In polyacrylamide gradients two bands of NADP+-dependent ADH are detectable: one with a molecular weight of 70,000 daltons and the other with 120,000 daltons. The occurrence of the three NADP+-dependent alcohol dehydrogenases is regulated by the carbon source of the medium. Sm. lipolytica shows a high tolerance against allylalcohol. Resistant mutants can be isolated only at concentrations of 1 M allylalcohol in the medium. All isolates of allylalcohol-resistant mutants show identical growth in medium containing ethanol as the wild type strain.  相似文献   

4.
An NADP(+)-dependent alcohol dehydrogenase was found in Euglena gracilis Z grown on 1-hexanol, while it was detected at low activity in cells grown on ethanol or glucose as a carbon source, indicating that the enzyme is induced by the addition of 1-hexanol into the medium as a carbon source. This enzyme was extremely unstable, even at 4 degrees C, unless 20% ethylene glycol was added. The optimal pH was 8.8-9.0 for oxidation reaction. The apparent K(m) values for 1-hexanol and NADP(+) were found to be 6.79 mM and 46.7 microM for this enzyme, respectively. The substrate specificity of this enzyme was very different from that of already purified NAD(+)-specific ethanol dehydrogenase by showing the highest activity with 1-hexanol as a substrate, followed by 1-pentanol and 1-butanol, and there was very little activity with ethanol and 1-propanol. This enzyme was active towards the primary alcohols but not secondary alcohols. Accordingly, since the NADP(+)-specific enzyme was separated on DEAE cellulose column, Euglena was confirmed to contain a novel enzyme to be active towards middle and long-chain length of fatty alcohols.  相似文献   

5.
The F420-dependent alcohol dehydrogenase (ADH) of Methanogenium liminatans and the NADP(+)-dependent ADH of Methanobacterium palustre were purified to homogeneity. The native F420-dependent ADH of Mg. liminatans had a molecular mass of 150 kDa and consisted of four (presumably identical) subunits with a mass of 39 kDa. The temperature optimum was 42 degrees C, the optimum pH 6.0 and NaCl or KCl were inhibitory. The NADP(+)-dependent ADH of Mb. palustre had a molecular mass of 175 kDa and consisted also of four (presumably identical) subunits with a mass of 44 kDa. The temperature optimum was 60 degrees C, the optimum pH 8.0 and optimal activity was observed in the presence of 500 mM NaCl or KCl. The ADHs of both organisms catalysed the oxidation of various secondary and cyclic alcohols to the corresponding ketones and the reverse reaction. No primary alcohols were apparently oxidized. The NADP(+)-dependent ADH of Mb. palustre contained 4-8 mol atoms zinc/mol enzyme and was inhibited by low concentrations of iodoacetate and 4-hydroxymercuribenzoate, whereas the F420-dependent ADH of Mg. liminatans presumably contained no zinc ions and was inhibited by 1,10-phenanthroline or high concentrations (e.g. 100 microM) of 4-hydroxymercuribenzoate. Polyclonal antibodies against the NADP(+)-dependent ADH of Mb. palustre precipitated only the homologous ADH. A precipitation of the NADP(+)-dependent ADH of Methanocorpusculum parvum required a 10-fold higher antibody concentration, showing at least a distant relationship of both ADHs. Antibodies against the NADP(+)-dependent ADH of Mcp. parvum, however, formed precipitates with the homologous ADH of Mcp. parvum and with the NADP(+)-dependent ADH of Mb. palustre. They also formed precipitates with the ADH of Thermoanaerobium brockii, which is not related to methane bacteria. Antibodies against the F420-dependent ADH of Mg. liminatans reacted only with the homologous enzyme and did not form precipitates with NADP(+)-dependent ADHs. No immunological relation of the NADP(+)- or F420-dependent ADHs of methanogens with ADH of yeast or horse liver was found. In accordance with the immunological data, the N-terminal amino acid sequences of the NADP(+)-dependent ADHs of Mb. palustre and Mcp. parvum had a high degree of similarity, whereas the N-terminal amino acid sequence of the ADH of Mg. liminatans revealed no similarity with the two NADP(+)-dependent enzymes.  相似文献   

6.
Ying X  Ma K 《Journal of bacteriology》2011,193(12):3009-3019
An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP(+). Metal analyses revealed that this NADP(+)-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent K(m) values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP(+), respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation.  相似文献   

7.
Cell-free extracts derived from yeasts Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328 Torulopsis sp. strain A1 and Kloeckera sp. strain A2 catalyzed an NAD+-dependent oxidation of secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol) to the corresponding methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). We have purified a NAD+-specific secondary alcohol dehydrogenase from methanol-grown yeast, Pichia sp. The purified enzyme is homogenous as judged by polyacrylamide gel electrophoresis. The purified enzyme catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones in the presence of NAD+ as an electron acceptor. Primary alcohols were not oxidized by the purified enzyme. The optimum pH for oxidation of secondary alcohols by the purified enzyme is 8.0. The molecular weight of the purified enzyme as determined by gel filtration is 98 000 and subunit size as determined by sodium dodecyl sulfate gel electrophoresis is 48 000. The activity of the purified secondary alcohol dehydrogenase was inhibited by sulfhydryl inhibitors and metal-binding agents.  相似文献   

8.
A novel secondary alcohol dehydrogenase has been isolated from Tritrichomonas foetus, the protozoan parasite which is responsible for bovine trichomonal abortion. The enzyme has been obtained in apparently homogeneous form after a 120-fold purification from cell homogenates, thus indicating that this activity constitutes an unusually high 1% of the total cytosolic protein. The native Mr = 115,000, determined by polyacrylamide gel electrophoresis. Mobility on sodium dodecyl sulfate gels suggests that the enzyme is composed of 6-8 subunits, identical as to molecular size (Mr = 17,000). The enzyme catalyzes the reversible oxidation of 2-propanol to acetone, using NADP+ (and not NAD+) as the redox-active co-substrate. Other small secondary alcohols, such as 2-butanol, 2- and 3-pentanol, cyclobutanol, and cyclopentanol are substrates, as are the corresponding ketones of these alcohols. Primary alcohols, such as ethanol and 1-propanol, are oxidized at rates less than 5% of that observed for 2-propanol. Product inhibition studies demonstrate an ordered kinetic mechanism, wherein the co-substrate (NADP+/NADPH) binds to the enzyme prior to binding of the substrate (alcohol/ketone).  相似文献   

9.
NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).  相似文献   

10.
Drosophila alcohol dehydrogenase (ADH), an NAD(+)-dependent dehydrogenase, shares little sequence similarity with horse liver ADH. However, these two enzymes do have substantial similarity in their secondary structure at the NAD(+)-binding domain [Benyajati, C., Place, A. P., Powers, D. A. & Sofer, W. (1981) Proc. Natl Acad. Sci. USA 78, 2717-2721]. Asp38, a conserved residue between Drosophila and horse liver ADH, appears to interact with the hydroxyl groups of the ribose moiety in the AMP portion of NAD+. A secondary-structure comparison between the nucleotide-binding domain of NAD(+)-dependent enzymes and that of NADP(+)-dependent enzymes also suggests that Asp38 could play an important role in cofactor specificity. Mutating Asp38 of Drosophila ADH into Asn38 decreases Km(app)NADP 62-fold and increases kcat/Km(app)NADP 590-fold at pH 9.8, when compared with wild-type ADH. These results suggest that Asp38 is in the NAD(+)-binding domain and its substituent, Asn38, allows Drosophila ADH to use both NAD+ and NADP+ as its cofactor. The observations from the experiments of thermal denaturation and kinetic measurement with pH also confirm that the repulsion between the negative charges of Asp38 and 2'-phosphate of NADP+ is the major energy barrier for NADP+ to serve as a cofactor for Drosophila ADH.  相似文献   

11.
Alcohol dehydrogenase (E. C. 1.1.1.1) from Thermoanaerobium brockii at 25 degrees C and at 65 degrees C is more active with secondary than primary alcohols. The enzyme utilizes NADP and NADPH as cosubstrates better than NAD and NADH. The maximum velocities (V(m)) for secondary alcohols at 65 degrees C are 10 to 100 times higher than those at 25 degrees C, whereas the K(m) values are more comparable.At both 25 degrees C and 65 degrees C the substrate analogue 1,1,1,3,3,3-hexafluoro-2-propanol inhibited the oxidation of alcohol competitively with respect to cyclopentanol, and uncompetitively with respect to NADP. Dimethylsulfoxide inhibited the reduction of cyclopentanone competitively with respect to cyclopentanone, and uncompetitively with respect to NADPH. As a product inhibitor, NADP was competitive with respect to NADPH. These results demonstrate that the enzyme binds the nucleotide and then the alcohol or ketone to form a ternary complex which is converted to a product ternary complex that releases product and nucleotide in that order.At 25 degrees C, all aldehydes and ketones examined inhibited the enzyme at concentrations above their Michaelis constants. The substrate inhibition by cyclopentanone was incomplete, and it was uncompetitive with respect to NADPH. Furthermore, cyclopentanone as a product inhibitor showed intercept-linear, slope-parabolic inhibition with respect to cyclopentanol. These results indicate that cyclopentanone binds to the enzyme-NADP complex at high concentrations. The resulting ternary complex slowly dissociates NADP and cyclopentanone.At 65 degrees C, all of the secondary alcohols, with the exception of cyclohexanol, show substrate activation at high concentration. Experiments in which NADP was the variable substrate and cyclopentanol as the constant-variable substrate over a wide range of concentrations gave double reciprocal plots in which the intercepts showed substrate activation and the slopes showed substrate inhibition. These results indicate that the secondary alcohols bind to the enzyme-NADPH complex at high concentrations and that the resulting ternary complex dissociates NADPH faster than the enzyme-NADPH complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The constitutive NADP+-dependent alcohol dehydrogenase from Acinetobacter calcoaceticus can be accumulated about 50 fold in 3 purification steps. The end-product shows in the analytical polyacrylamide gel electrophoresis only one active enzyme band. The molecular weight of the enzyme was determined to be 235,000 by gel chromatography on Sephadex G 200, the smallest subunit shows a molecular weight of 61 000 on SDS electrophoresis. The isoelectric point is at 5.84. The KM values determined with primary aliphatic alcohols diminish in the range of the homologous order (C2--C10) with growing chain length. The KM value for hexanal is about 20 fold less than that for 1-hexanol.  相似文献   

13.
Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde.  相似文献   

14.
A new NADP(H)-dependent alcohol dehydrogenase (the YCR105W gene product, ADHVII) has been identified in Saccharomyces cerevisiae. The enzyme has been purified to homogeneity and found to be a homodimer of 40 kDa subunits and a pI of 6.2-6.4. ADHVII shows a broad substrate specificity similar to the recently characterized ADHVI (64% identity), although they show some differences in kinetic properties. ADHVI and ADHVII are the only members of the cinnamyl alcohol dehydrogenase family in yeast. Simultaneous deletion of ADH6 and ADH7 was not lethal for the yeast. Both enzymes could participate in the synthesis of fusel alcohols, ligninolysis and NADP(H) homeostasis.  相似文献   

15.
A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase.  相似文献   

16.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

17.
Bisubstrate inhibitors, obtained by covalently linking 2-oxoglutarate with NAD+ and NADP+, were synthesized and tested for their ability to inhibit NAD+- and NADP+-dependent isocitrate dehydrogenases from pig heart mitochondria. The NADP+-dependent enzyme was specifically inhibited by the NADP oxoglutarate adduct and not by the NAD adduct. The NADP adduct was competitive with both coenzyme and substrate, isocitrate. In contrast, the NAD+-dependent enzyme was inhibited by both adducts. NAD oxoglutarate is competitive with both NAD+ and isocitrate while the NADP adduct is competitive with isocitrate but not with NAD+. Nevertheless conditions could be set up so that use of these inhibitors would be feasible for a metabolic study.  相似文献   

18.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

19.
An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerevisiae, has been shown to mitigate the toxicity of FFA and HMF by catalyzing the NADPH-dependent conversion to corresponding alcohols, furfuryl alcohol (FFOH) and 5-hydroxymethylfurfuryl alcohol (HMFOH). At pH 7.0 and 25°C, purified Ari1p catalyzes the NADPH-dependent reduction of substrates with the following values (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFA (23.3, 1.82, 12.8), HMF (4.08, 0.173, 23.6), and dl-glyceraldehyde (2.40, 0.0650, 37.0). When acting on HMF and dl-glyceraldehyde, the enzyme operates through an equilibrium ordered kinetic mechanism. In the physiological direction of the reaction, NADPH binds first and NADP(+) dissociates from the enzyme last, demonstrated by k(cat) of HMF and dl-glyceraldehyde that are independent of [NADPH] and (K(ia)(NADPH)/k(cat)) that extrapolate to zero at saturating HMF or dl-glyceraldehyde concentration. Microscopic kinetic parameters were determined for the HMF reaction (HMF+NADPH?HMFOH+NADP(+)), by applying steady-state, presteady-state, kinetic isotope effects, and dynamic modeling methods. Release of products, HMFOH and NADP(+), is 84% rate limiting to k(cat) in the forward direction. Equilibrium constants, [NADP(+)][FFOH]/[NADPH][FFA][H(+)]=5600×10(7)M(-1) and [NADP(+)][HMFOH]/[NADPH][HMF][H(+)]=4200×10(7)M(-1), favor the physiological direction mirrored by the slowness of hydride transfer in the non-physiological direction, NADP(+)-dependent oxidation of alcohols (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFOH (0.221, 0.00158, 140) and HMFOH (0.0105, 0.000104, 101).  相似文献   

20.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号