首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线粒体疾病与核基因-线粒体基因的表达调控   总被引:5,自引:0,他引:5  
严庆丰  管敏鑫 《生命科学》2008,20(4):496-505
线粒体与疾病是当前生物医学领域最前沿之一。本文简单介绍线粒体生物医学的基础知识、线粒体疾病的遗传模式,综述了近年来在线粒体DNA(mtDNA)突变和疾病、核基因突变和疾病等领域的研究进展,着重阐明核基因(特别是核修饰基因)调控mtDNA突变致病表达的分子机制。  相似文献   

2.
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.  相似文献   

3.
Mitochondrial rRNA and tRNA and hearing function   总被引:2,自引:0,他引:2  
Xing G  Chen Z  Cao X 《Cell research》2007,17(3):227-239
  相似文献   

4.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   

5.
Mitochondrial dysfunction is involved in many neurodegenerative disorders in humans. Here we report mutations in a gene (designated levy) that codes for subunit VIa of cytochrome c oxidase (COX). The mutations were identified by the phenotype of temperature-induced paralysis and showed the additional phenotypes of decreased COX activity, age-dependent bang-induced paralysis, progressive neurodegeneration, and reduced life span. Germ-line transformation using the levy(+) gene rescued the mutant flies from all phenotypes including neurodegeneration. The data from levy mutants reveal a COX-mediated pathway in Drosophila, disruption of which leads to mitochondrial encephalomyopathic effects including neurodegeneration, motor dysfunction, and premature death. The data present the first case of a mutation in a nuclear-encoded structural subunit of COX that causes mitochondrial encephalomyopathy rather than lethality, whereas several previous attempts to identify such mutations have not been successful. The levy mutants provide a genetic model to understand the mechanisms underlying COX-mediated mitochondrial encephalomyopathies and to explore possible therapeutic interventions.  相似文献   

6.
The Mitochondrial Theory of Aging postulates that accumulation of mtDNA mutations and mitochondrial dysfunction are responsible for generating aging phenotypes and limiting lifespan. Although widely accepted, this theory remains unproven because the evidence supporting it, while substantial, is largely correlative. Furthermore, recent experimental results in mice with accelerated rates of mtDNA mutagenesis have challenged the traditional formulation of the Mitochondrial Theory, perhaps warranting a reevaluation of some of its core principles. In this perspective, we summarize recent work suggesting that both the quantity and the quality of mitochondrial gene expression play a much greater role in the aging process than previously appreciated. We speculate that this form of mitochondrial dysfunction may operate independently or in concert with mtDNA mutations to promote age-related pathology and limit lifespan.  相似文献   

7.
8.
Recently, mitochondria have been identified as important contributors to the virulence and drug tolerance of human fungal pathogens. In different scenarios, either hypo- or hypervirulence can result from changes in mitochondrial function. Similarly, specific mitochondrial mutations lead to either sensitivity or resistance to antifungal drugs. Here, we provide a synthesis of this emerging field, proposing that mitochondrial function in membrane lipid homeostasis is the common denominator underlying the observed effects of mitochondria in drug tolerance (both sensitivity and resistance). We discuss how the contrasting effects of mitochondrial dysfunction on fungal drug tolerance and virulence could be explained and the potential for targeting mitochondrial factors for future antifungal drug development.  相似文献   

9.
Since the early days of mitochondrial medicine, it has been clear that optic atrophy is a very common and sometimes the singular pathological feature in mitochondrial disorders. The first point mutation of mitochondrial DNA (mtDNA) associated with the maternally inherited blinding disorder, Leber's hereditary optic neuropathy (LHON), was recognized in 1988. In 2000, the other blinding disorder, dominant optic atrophy (DOA) Kjer type, was found associated with mutations in the nuclear gene OPA1 that encodes a mitochondrial protein. Besides these two non-syndromic optic neuropathies, optic atrophy is a prominent feature in many other neurodegenerative diseases that are now recognized as due to primary mitochondrial dysfunction.We will consider mtDNA based syndromes such as LHON/dystonia/Mitochondrial Encephalomyopahty Lactic Acidosis Stroke-like (MELAS)/Leigh overlapping syndrome, or nuclear based diseases such as Friedreich ataxia (mutations in FXN gene), deafness-dystonia-optic atrophy (Mohr-Tranebjerg) syndrome (mutations in TIMM8A), complicated hereditary spastic paraplegia (mutations in SPG7), DOA “plus” syndromes (mutations in OPA1), Charcot-Marie-Tooth type 2A (CMT2A) with optic atrophy or hereditary motor and sensory neuropathy type VI (HMSN VI) (mutations in MFN2), and Costeff syndrome and DOA with cataract (mutations in OPA3). Thus, genetic errors in both nuclear and mitochondrial genomes often lead to retinal ganglion cell death, a specific target for mitochondrial mediated neurodegeneration. Many mechanisms have been studied and proposed as the bases for the pathogenesis of mitochondrial optic neuropathies including bioenergetic failure, oxidative stress, glutamate toxicity, abnormal mitochondrial dynamics and axonal transport, and susceptibility to apoptosis.  相似文献   

10.
Involvement of mitochondrial and nuclear gene mutations in the development of type 2 diabetes (T2D) has been established well in various populations around the world. Previously, we have found the mitochondrial A>G transition at nucleotide position 3243 and 8296 in the T2D patients of Coimbatore population. This study is aimed to screen for the presence of various mitochondrial and nuclear DNA mutations in the T2D patients of Coimbatore to identify most prevalent mutation. This helps in identifying the susceptible individuals based on their clinical phenotype in future. Blood samples were collected from 150 unrelated late-onset T2D patients and 100 age-matched unrelated control samples according to World Health Organization criteria. Genotyping for the selected genes was done by polymerase chain reaction–single strand confirmation polymorphism, direct sequencing, and polymerase chain reaction–restriction fragment length polymorphism. The mitochondrial T>C transition at 8356 and nuclear-encoded GLUT1 gene mutation were found in the selected T2D patients. The T8356C mutation was found in two patients (1.3%), and the clinical characteristics were found to be similar in both the patients whereas GLUT1 gene mutation was found in seven patients. Four out of seven patients showed homozygous (?) genotype and three patients showed heterozygous (±) genotype for the mutant allele XbaI. Among these three patients, one patient was found to have elevated level of urea and creatinine with the history of kidney dysfunction and chronic T2D. Our results suggest that the T8356C and GLUT1 gene mutations may have an important role in developing late-onset T2D in Coimbatore population. Particularly, individuals with GLUT1 gene may develop kidney dysfunction at their later age.  相似文献   

11.
Desmin, being a major intermediate filament of muscle cells, contributes to stabilization and positioning of mitochondria. Desmin mutations have been reported in conjunction with skeletal myopathies accompanied by mitochondrial dysfunction. Depending on the ability to promote intracellular aggregates formation, mutations can be considered aggregate-prone or non-aggregate-prone. The aim of the present study was to describe how expression of different desmin mutant isoforms effects mitochondria and contributes to the development of myocyte dysfunction. To achieve this goal, two non-aggregate-prone (Des S12F and Des A213V) and four aggregate-prone (Des L345P, Des A357P, Des L370P, Des D399Y) desmin mutations were expressed in skeletal muscle cells. We showed that all evaluated mutations affected the morphology of mitochondrial network, suppressed parameters of mitochondrial respiration, diminished mitochondrial membrane potential, increased ADP/ATP ratio, and enhanced mitochondrial DNA (mtDNA) release. mtDNA was partially secreted through exosomes as demonstrated by GW4869 treatment. Dysfunction of mitochondria was observed regardless the type of mutation: aggregate-prone or non-aggregate-prone. However, expression of aggregate-prone mutations resulted in more prominent phenotype. Thus, in this comparative study of six pathogenic desmin mutations that cause skeletal myopathy development, we confirmed a role of mitochondrial dysfunction and mtDNA release in the pathogenesis of desmin myopathies, regardless of the aggregation capacity of the mutated desmin.  相似文献   

12.
The mitochondrial replicative DNA helicase is essential for animal mitochondrial DNA (mtDNA) maintenance. Deleterious mutations in the gene that encodes it cause mitochondrial dysfunction manifested in developmental delays, defects and arrest, limited life span, and a number of human pathogenic phenotypes that are recapitulated in animals across taxa. In fact, the replicative mtDNA helicase was discovered with the identification of human disease mutations in its nuclear gene, and based upon its deduced amino acid sequence homology with bacteriophage T7 gene 4 protein (T7 gp4), a bi-functional primase-helicase. Since that time, numerous investigations of its structure, mechanism, and physiological relevance have been reported, and human disease alleles have been modeled in the human, mouse, and Drosophila systems. Here, we review this literature and draw evolutionary comparisons that serve to shed light on its divergent features.  相似文献   

13.
Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging   总被引:4,自引:0,他引:4  
A wide spectrum of alterations in mitochondria and mitochondrial DNA (mtDNA) with aging has been observed in animals and humans. These include (i) decline in mitochondrial respiratory function; (ii) increase in mitochondrial production of reactive oxygen species (ROS) and the extent of oxidative damage to DNA, proteins, and lipids; (iii) accumulation of point mutations and large-scale deletions of mtDNA; and (iv) enhanced apoptosis. Recent studies have provided abundant evidence to substantiate the importance of mitochondrial production of ROS in aging. On the other hand, somatic mtDNA mutations can cause premature aging without increasing ROS production. In this review, we focus on the roles that ROS play in the aging-associated decline of mitochondrial respiratory function, accumulation of mtDNA mutations, apoptosis, and alteration of gene expression profiles. Taking these findings together, we suggest that mitochondrial dysfunction, enhanced oxidative stress, subsequent accumulation of mtDNA mutations, altered expression of a few clusters of genes, and apoptosis are important contributors to human aging.  相似文献   

14.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats which code for glutamine in the HD gene product, huntingtin. Huntingtin is expressed in almost all tissues, so abnormalities outside the brain can also be expected. Involvement of nuclei and mitochondria in HD pathophysiology has been suggested. In fact mitochondrial dysfunction is reported in brains of patients suffering from HD. The tRNA gene mutations are one of hot spots that can cause mitochondrial disorders. In this study, possible mitochondrial DNA (mtDNA) damage was evaluated by screening for mutations in the tRNAleu/lys and ATPase 6 genes of 20 patients with HD, using PCR and automated DNA sequencing. Mutations including an A8656G mutation in one patient were observed, which may be causal to the disease. Understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could potentially be important for the development of therapeutic strategies in HD.  相似文献   

15.
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.  相似文献   

16.
In human pathology, several diseases are associated with somatic mutations in the mitochondrial genome (mtDNA). Even though mitochondrial dysfunction leads to increased oxidative stress, the role of mitochondrial mutations in atherosclerosis has not received much attention so far. In this study we analyzed the association of mitochondrial genetic variation with the severity of carotid atherosclerosis, as assessed by carotid intima-media thickness (cIMT) and the presence of coronary heart disease (CHD) in 190 subjects from Moscow, Russia, a population with high CHD occurrence. cIMT was measured by high-resolution B-mode ultrasonography and mtDNA heteroplasmies by a pyrosequencing-based method. We found that heteroplasmies for several mutations in the mtDNA in leukocytes, including C3256T, T3336C, G12315A, G13513A, G14459A, G14846A, and G15059A mutations, were significantly (p<0.001) associated with both the severity of carotid atherosclerosis and the presence of CHD. These findings indicate that somatic mitochondrial mutations have a role in the development of atherosclerosis.  相似文献   

17.
Morbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction. As a result, particular mitochondrial diabetes kinds like MIDD (maternally inherited diabetes & deafness) and DAD (diabetic autonomic dysfunction) have been identified and studied (diabetes and Deafness). Some mutations as in mitochondrial DNA (mtDNA), that encodes for a significant portion of mitochondrial proteins as well as mitochondrial tRNA essential for mitochondrial protein biosynthesis, are responsible for hereditary mitochondrial diseases. Tissue-specificity and heteroplasmy have a role in the harmful phenotype of mtDNA mutations, making it difficult to generalise findings from one study to another. There are a huge increase in the number for mtDNA mutations related with human illnesses that have been identified using current sequencing technologies. In this study, we make a list on mtDNA mutations linked with diseases and diabetic illnesses and explore the methods by which they contribute to the pathology's emergence.  相似文献   

18.
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.  相似文献   

19.
Mitochondrial DNA is subject to increased rates of mutations due to its proximity to the source of reactive oxygen species. Here we show that increased MHC class I (MHC I) expression serves to alert the immune system to cells with mitochondrial mutations. MHC I is overexpressed in fibroblasts with mitochondrial dysfunction from patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and in lymphocytes from purine nucleoside phosphorylase-deficient immune-deficient mice with mitochondrial DNA deletions. Consistent with a role of MHC I in the elimination of cells containing mitochondrial DNA mutations, mice deficient in MHC I accumulate mitochondrial DNA deletions in various tissues. These observations in both mice and humans suggest a role for the immune system in preventing reversion of mitochondrial DNA back into a parasitic state following deleterious mutations affecting mitochondrial oxidative phosphorylation.  相似文献   

20.
Mitochondrial function plays an important role in multiple human diseases and mutations in the mitochondrial genome have been detected in nearly every type of cancer investigated to date. However, the mechanism underlying the interrelation is unknown. We used human cell lines depleted of mitochondrial DNA as models and analyzed the outcome of mitochondrial dysfunction on major cellular repair activities. We show that the deoxyribonucleoside triphosphate (dNTP) pools are affected, most prominently we detect a 3-fold reduction of the dTTP pool when normalized to the number of cells in S-phase. It is known that imbalanced dNTP pools are mutagenic and in accordance, we show that mitochondrial dysfunction results in chromosomal instability, which can explain its role in tumor development. We did not find any straightforward correlation between ATP levels and dNTP pools in cells with defective mitochondrial activity. Our results suggest that mitochondria are central players in maintaining genomic stability and in controlling essential nuclear processes such as upholding a balanced supply of nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号