首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast Growth Factor (FGF) stimulates quiescent Swiss 3T3 cells to initiate DNA synthesis and divide. Cells begin to enter the S-phase after a lag of 13–15 hr, and the rate of initiation of DNA synthesis in the population can be quantified by a first order rate constant, k. A subsaturating concentration of FGF may establish the lag phase, while the value of k is dependent on the FGF concentration present during the second half of the lag phase. Insulin and hydrocortisone enhance the effect of FGF by increasing k without changing the lag phase, and they can act when added at any time after FGF. Prostaglandin E1 (PGE1) causes a decrease in k and a lengthening of the lag phase, and acts only when added during the first 8 hr. None of these agents stimulate DNA synthesis in the absence of FGF. These results show that the stimulation of growth by FGF follows the same basic pattern as was previously shown with Prostaglandin F (PGF). However, since hydrocortisone inhibits stimulation by PGF when added during the first 4 hr of the lag phase, there are clearly differences in some events stimulated by the two growth factors.  相似文献   

2.
Quiescent Swiss 3T3 fibroblasts stimulated with epidermal growth factor and insulin showed large transient increases in c-myc mRNA and c-myc protein accumulation which were maximal at about 2 h after addition of the co-mitogens. When the cells were loaded with 0.1 mM of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) by transient permeabilisation immediately before mitogenic stimulation, the increase in c-myc mRNA was similar to that observed in unloaded cells but the corresponding c-myc protein peak was reduced by at least 95%. The GTP gamma S completely blocked incorporation of [35S]methionine into cell proteins for 3-4 h after addition of the mitogens, but not thereafter, and caused a delay in the subsequent onset of DNA synthesis by the same period. The data show that less than 5% of the early increase in c-myc protein normally observed after mitogenic stimulation is required for its obligatory role in the progression of cells to S phase implied by other evidence.  相似文献   

3.
Tunicamycin, an inhibitor of the asparagine-linked protein N-glycosylation, blocks the initiation of DNA synthesis in Swiss 3T3 cells stimulated by prostaglandin F2 alpha alone or with insulin. This effect is exerted only when tunicamycin is added from 0 to 8 h after stimulation and it decreases the rate of entry into S phase. Blocking of labeled sugar incorporation to proteins occurs regardless of the time of PGF2 alpha stimulation. In contrast tunicamycin does not inhibit protein synthesis. These results suggest that N-glycoprotein synthesis early during the prereplicative phase is an important event controlling the mitogenic action of PGF2 alpha.  相似文献   

4.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

5.
An approach to the investigation how growth factors and hormones regulate mammalian cell proliferation is to study the activity of enzymes involved in DNA replication. Quiescent cultures of Swiss mouse 3T3 cells were stimulated with prostaglandin F2 alpha, insulin, and/or hydrocortisone for a time at which less than 50% of the cells had initiated DNA synthesis. Such cells were lysed with a Ca++-containing hypotonic buffer and incubated with a nucleotide mixture including [3H]thymidine-triphosphate for 1 hr at 37 degrees C. The amount of radioactive label incorporated into the trichloroacetic acid (TCA)-precipitate and the percentage of labeled nuclei correlated with the in vivo stimulation. Analysis of radioactively and density-labeled DNA in sucrose and CsC gradients indicated that the incorporation of label reflected semiconservative replication. DNA polymerase activities were assayed in supernatants from whole-cell lysates prepared with a hypotonic buffer not containing Ca++. Using various templates, it was shown that the increase in activity of DNA polymerase alpha correlated with the percentage of cells in S phase upon the different stimulation, while DNA polymerase beta activity after various times of stimulation showed that this activity increased only when cells began to enter S phase, regardless of the combination of growth factor and hormones.  相似文献   

6.
B B Olwin  S D Hauschka 《Biochemistry》1986,25(12):3487-3492
Two distinct fibroblast growth factors (FGF) were purified to homogeneity from bovine brain on the basis of their ability to stimulate skeletal muscle myoblast proliferation. These growth factors are also mitogenic for Swiss 3T3 cells and appear to be closely related to or identical with previously isolated anionic and cationic fibroblast growth factors. The half-maximum concentrations (EC50) for stimulation of myoblast DNA synthesis by the anionic and cationic growth factors were 30pM and 1pM, respectively. In contrast, an EC50 of 45 pM was observed for stimulation of 3T3 cell DNA synthesis by both growth factors. Binding of 125I-labeled anionic FGF was saturable with apparent Kd values of 45 pM and 11 pM and approximately 60 000 and 2000 receptor sites per cell for 3T3 cells and MM14 murine myoblasts, respectively. Unlabeled anionic and cationic FGF equally displaced 125I-labeled anionic FGF from 3T3 cells while cationic FGF was more potent than anionic FGF for displacement from skeletal muscle myoblasts, demonstrating that a single receptor binds the two distinct growth factors. Binding was specific for these factors since platelet-derived growth factor, insulin, insulin-like growth factor 1, epidermal growth factor, and nerve growth factor were unable to displace bound 125I-labeled anionic FGF from Swiss 3T3 cells. Chemical cross-linking of specifically bound 125I-labeled anionic FGF to 3T3 cells and MM14 myoblasts identified a single detergent-soluble FGF receptor with an apparent molecular weight of 165 000.  相似文献   

7.
When subconfluent, Swiss 3T3 cells made quiescent by serum deprivation are stimulated with low concentrations of serum (ca. 1%), only a proportion of them (roughly 50%) enter S phase despite daily replacement with fresh, low-serum medium. The cells that fail to enter S phase are not incapable of doing so, since most of them initiate DNA synthesis after transfer to 10% serum. It would appear that individual cells vary in their growth factor requirements. Using time-lapse cinemicroscopy a few of the cells that respond to low serum were seen to give rise to several generations of progeny, while the majority of cells failed to divide at all, or divided once at most. Despite this, differences between cells in growth factor requirements do not seem to be heritable in the long term, since attempts to enrich for responding cells by prolonged culture in 1% serum have been unsuccessful. Rather, it would appear that the capacity to respond to low serum is an unstable property lost after a few generations in low serum. The loss of responsiveness shows parallels with "cellular senescence" and could conceivably result from decay of the platelet-derived growth factor-induced state of "competence." But regardless of why some cells respond to low serum while others do not, it is clear that the kinetics of entry into S phase after serum stimulation of quiescent 3T3 cells are not strictly first-order, since the labelling index plateaus after roughly 3 days at values substantially below 100%. As such, the kinetics, though not contradicting the transition probability model, cannot be taken to support it as was previously thought.  相似文献   

8.
Tunicamycin, an inhibitor of the asparagine-linked protein N-glycosylation, blocks the initiation of DNA synthesis in Swiss 3T3 cells stimulated by prostaglandin F alone or with insulin. This effect is exerted only when tunicamycin is added from 0 to 8 h after stimulation and it decreases the rate of entry into S phase. Blocking of labeled sugar incorporation to proteins occurs regardless of the time of PGF stimulation. In contrast tunicamicin does not inhibit protein synthesis. These results suggest that N-glycoprotein synthesis early during the prereplicative phase is an important event controlling the mitogenic action of PGF  相似文献   

9.
We have investigated the length of the lag phase (time taken for the first cells to enter S phase) and the kinetics of entry into DNA synthesis after serum restimulation of Swiss mouse 3T3 cell cultures that were allowed to become quiescent under different conditions. Cells were allowed to reach quiescence as a confluent monolayer in medium containing 10% (v/v) calf serum. Alternatively, when serum was reduced to 1% (v/v), cultures became quiescent at about 30% confluency and there was little cell to cell contact. The results show that the lag, or prereplicative phase becomes longer as the time spent in the quiescent state increases. This is the case in both confluent and non-confluent cultures. The rate of entry of cells into the S phase, however, remains the same under all conditions.  相似文献   

10.
Gently trypsinized Swiss 3T3 cells inoculated into medium MCDB 402 attach readily to polylysine-coated surfaces and remain viable for several days in the absence of exogenously added protein. Short-term multiplication under defined conditions can be obtained by supplementing the MCDB 402 with fibroblast growth factor (FGF), insulin (INS), and dexamethasone (DEX). Addition of bovine plasma fibronectin further improves attachment and viability. This system does not require initial plating in serum or the addition of poorly defined extracts for cellular attachment or for multiplication. In the complete system minus FGF, cells plated at a low density attach to the culture surface and become quiescent. The addition of FGF or PDGF 48–72 h after plating stimulates a high level of DNA synthesis during the following 24 h. EGF also stimulates DNA synthesis in these cells, but to a lesser extent. Insulin and dexamethasone are not needed for the initial DNA synthesis response to FGF, but are needed for continuing multiplication over a period of several days. This system provides a means for studying the effects of specific mitogens on Swiss 3T3 cells in the absence of undefined supplements, and without complications due to density-dependent inhibition.  相似文献   

11.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

12.
P F Maness  R C Walsh 《Cell》1982,30(1):253-262
Dihydrocytochalasin B (H2CB) disrupts the actin structure of Swiss/3T3 mouse fibroblasts and inhibits the ability of serum growth factors to stimulate DNA synthesis in quiescent cultures. Low doses of H2CB (2-10 X 10(-7) M) added to serum-arrested cells reversibly block initiation of DNA synthesis by serum; by epidermal growth factor and insulin; or by epidermal growth factor, fibroblast growth factor and insulin. H2CB is effective only when added to cells within 8-10 hr after stimulation. Low doses of H2CB cause cell rounding and a loss of actin microfilament bundles, but they do not interfere with glucose or thymidine transport. These results suggest that stimulation of 3T3 cells involves at least one obligatory actin-mediated step. Transformed cells appear to obviate this step, for H2CB does not inhibit the entry into S phase of SV40-transformed or Moloney murine sarcoma virus-transformed 3T3 cells synchronized by mitotic shake-off.  相似文献   

13.
We examined whether protein kinase D (PKD) overexpression in Swiss 3T3 cells potentiates the proliferative response to either the G protein-coupled receptor agonists bombesin and vasopressin or the biologically active phorbol ester phorbol 12,13-dibutyrate (PDBu). In order to generate Swiss 3T3 cells stably overexpressing PKD, cultures of these cells were infected with retrovirus encoding murine PKD and green fluorescent protein (GFP) expressed as two separate proteins translated from the same mRNA. GFP was used as a marker for selection of PKD-positive cells. PKD overexpressed in Swiss 3T3 cells was dramatically activated by cell treatment with bombesin or PDBu as judged by in vitro kinase autophosphorylation assays and exogenous substrate phosphorylation. Concomitantly, these stimuli induced PKD phosphorylation at Ser(744), Ser(748), and Ser(916). PKD activation and phosphorylation were prevented by exposure of the cells to protein kinase C-specific inhibitors. Addition of bombesin, vasopressin, or PDBu to cultures of Swiss 3T3 cells overexpressing PKD induced a striking increase in DNA synthesis and cell number compared with cultures of Swiss 3T3-GFP cells. In contrast, stimulation of DNA synthesis in response to epidermal growth factor, which acts via protein kinase C/PKD-independent pathways, was not enhanced. Our results demonstrate that overexpression of PKD selectively potentiates mitogenesis induced by bombesin, vasopressin, or PDBu in Swiss 3T3 cells.  相似文献   

14.
Numatrin is a tightly bound nuclear matrix protein (40 kD/pI-5) whose synthesis is markedly and promptly increased in association with cellular commitment for mitogenesis in B lymphocytes. (Feuerstein, N., and J.J. Mond. 1987. J. Biol. Chem. 262:11389-11397). To study whether this event is exclusively associated with proliferation of B lymphocytes, we examined the synthesis of numatrin in T lymphocytes (murine and human) activated by lectins or by anti-T cell antigen receptor monoclonal antibody and in Swiss 3T3 fibroblasts stimulated by growth factors. We showed a close correlation between induction of DNA synthesis and induction of numatrin synthesis in T lymphocytes stimulated by concanavalin A, anti-T cell antigen receptor monoclonal antibody, and IL-2 in murine T cells. Similar results were observed in Swiss 3T3 fibroblasts, thus only combinations of growth factors (insulin/EGF or insulin/B subunit of cholera toxin) or serum, which induced a significant increase in DNA synthesis, were also associated with a significant increase in synthesis of numatrin. Similar to B cells, the increase in numatrin synthesis in fibroblasts was found to occur at early G1 phase. The calcium ionophores, A23187 and ionomycin, previously shown to induce an increase in c-myc and c-fos mRNA levels in fibroblasts, induced a marked increase in the synthesis of a nuclear protein at 80 kD/pI-5 but failed to induce an increase in the synthesis of numatrin indicating that an increase in intracellular Ca++ level is not sufficient for induction of the synthesis of numatrin. This further indicates that the increase in synthesis of numatrin may be more closely correlated with cellular commitment for mitogenesis as compared with other biochemical parameters. Using a polyclonal numatrin antibody we demonstrated that mitogen stimulation is also associated with a marked increase in numatrin abundance, which reached a peak at the onset of S phase and declined at the end of S phase. Evidence is presented to show that numatrin synthesis and abundance is elevated in various lymphoma cell lines. Using indirect immunofluorescence assays we showed that numatrin is abundant in other malignant cells: KB, epidermoid carcinoma, and Hep2 human hepatoma. Immunofluorescence studies further showed that mitogen stimulation of B lymphocytes induced a marked accumulation of numatrin in the nucleoli. This observation is in accord with the recent finding of identity of numatrin with the nucleolar protein B23 (Feuerstein et al. 1988. J. Biol. Chem. 263:10608-10612).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The effect of serum and growth factors [platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)] on the synthesis of the nuclear protein cyclin and its correlation with DNA synthesis has been studied in quiescent mouse 3T3 cells by means of quantitative two-dimensional gel electrophoresis. Serum must be present in the medium for at least 8-12 h to induce maximal synthesis of cyclin (6- to 7-fold increase compared with quiescent cells). The stimulation of cyclin synthesis is dose-dependent and correlates directly with DNA synthesis. In addition, partially purified PDGF and FGF also induce cyclin and DNA synthesis in a coordinate way. Both growth factors, like serum, exhibit a similar lag phase to induce maximal cyclin (6- to 7-fold) and DNA synthesis (90% of the cells). Pure PDGF at a concentration as low as 10 ng/ml has the same effect as 10% serum. The coordinate induction of cyclin and DNA synthesis can only be observed with growth factors that induce DNA synthesis. These results strengthen the notion that cyclin is an essential component of the events leading to DNA replication.  相似文献   

16.
Protein kinase D (PKD) potentiates cellular DNA synthesis in response to G protein-coupled receptor (GPCR) agonists but the mechanism(s) involved has not been elucidated. Here, we examined whether PKD overexpression in Swiss 3T3 cells regulates the activation/inactivation kinetics of the extracellular-regulated protein kinase (ERK) in response to the mitogenic GPCR agonists bombesin and vasopressin. Addition of bombesin or vasopressin to Swiss 3T3 cells overexpressing PKD induced a striking increase in the duration of MEK/ERK/RSK activation as compared with cultures of either control Swiss 3T3 cells or Swiss 3T3 cells expressing a kinase-inactive PKD mutant. In contrast, the duration of ERK activation in response to epidermal growth factor, which acts via protein kinase C/PKD-independent pathways, was not increased. Furthermore, bombesin or vasopressin promoted a striking increase in phosphorylation (at Ser-374) and accumulation of c-Fos (the c-fos proto-oncogene product) in Swiss 3T3 cells overexpressing wild-type (but not kinase-inactive) PKD. Inhibition of the sustained phase of ERK/RSK activation abrogated the increase in c-Fos accumulation and DNA synthesis induced by bombesin or vasopressin in PKD-overexpressing cells. Our results demonstrate that PKD selectively potentiates mitogenesis induced by bombesin or vasopressin in Swiss 3T3 cells by increasing the duration of MEK/ERK/RSK signaling.  相似文献   

17.
The rapid increase in uridine uptake produced by the addition of serum to quiescent cultures of fibroblasts is primarily caused by an enhanced rate of nucleoside phosphorylation. While quiescent and serum-stimulated cells display identical initial rates of transport, they show a considerable change in the composition of the acid-soluble pools labelled with [3H] uridine for five seconds. The radioactivity recovered in the phosphorylated pools increases 2-, 3-, 4- and 6-fold after addition of serum to cultures of Swiss 3T3 cells, tertiary mouse embryo fibroblasts, Swiss 3T6 and Balb 3T3, cells respectively. Furthermore, insulin, a growth factor isolated from medium conditioned by SV40 BHK cells (FDGF) and epidermal growth factor (EGF) also stimulate uridine phosphorylation within minutes. The initial rate of uridine uptake is 2- to 3-fold faster in rapidly growing normal and Simian virus 40 or polyoma virus transformed 3T3 cells as compared to untransformed 3T3 cells in the quiescent state. When quiescent cultures of 3T3 or mouse embryo cells are stimulated to leave G1 and enter into DNA synthesis, transport increases several hours after addition of serum and apparently coincides with the S phase of the cell cycle. The results demonstrate that an increase in uridine phosphorylation is a rapid metabolic response elicited by growth-promoting agents in a variety of cell types and that uridine transport and phosphorylation are independently regulated.  相似文献   

18.
To elucidate conditions which affect the lag time for resting cells to enter S phase after serum stimulation, we used a wild-type 3Y1 rat fibroblast line and four temperature-sensitive mutants of 3Y1 (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203). Among these five lines, in only tsG125 cells was there an obviously prolonged lag time with increase in time in resting state at 33.8 degrees C. The resting wild-type 3Y1 cells, preexposed to 39.8 degrees C, also showed a prolongation of lag time. The prolongation in tsG125 had a certain limit. Preexposure to 39.8 degrees C before serum stimulation accelerated such prolongation in tsG125 to its limit, but did not change the limit, per se. Resting tsG125 cells stimulated by serum at 39.8 degrees C, did not enter S phase, yet they did advance toward S phase. When they were kept at 39.8 degrees C, they retreated toward a deeper resting state ("G0") with time. These retreats correlated with the decrease in stimulating activity in the culture media. About 20% of the resting tsG125 cells stimulated by serum at 39.8 degrees C were committed to enter S phase, when the extent of commitment was examined at 33.8 degrees C. Most of the tsG125 cells committed at 33.8 degrees C did not enter S phase, when the extent of commitment was examined at 39.8 degrees C. More cells were committed after stimulation at 33.8 degrees C than at 39.8 degrees C, when the test was done at 33.8 degrees C. We suggest that resting cells may be reversibly changed within range of resting states, in either direction, that is, advance toward S phase or retreat toward deeper "G0." These changes may be determined by alterations in the balance between synthesis and decay of the preparedness for the initiation of DNA synthesis caused by cellular response to environmental changes (e.g., medium activity, temperature, etc.). The ts defect in tsG125 may affect the cell cycle progression, both before and after commitment by serum.  相似文献   

19.
Bombesin and its mammalian counterpart gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells in which distinct high affinity receptors have been identified. We developed here a probe for specific ligand affinity chromatography by coupling biotin to [lys3]bombesin. The resulting biotinylated [lys3]bombesin (BLB) retained biological activity as judged by inhibition of [125I]GRP binding to intact cells and membrane preparations and stimulation of rapid Ca2+ mobilization and DNA synthesis in intact cells. Using this ligand and magnetised beads coated with streptavidin, we extracted differentially a single protein from detergent-solubilized Swiss 3T3 membranes in a BLB-dependent manner. Visualization was achieved either after autoradiograph of metabolically labelled proteins with [35S]methionine or by silver staining of larger preparations. In other experiments, elution of BLB-receptor complexes bound to streptavidin beads was carried out at neutral pH and the eluted fraction was reconstituted into phospholipid vesicles. This procedure revealed [125I]GRP binding activity that exhibited saturability, specificity and a 1946-fold increase in specific activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号