首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ethylene, applied as ethephon, inhibited the elongation of etiolated, axillary potato shoots cultured in vitro and it stimulated radial growth along the whole length of these shoots. The same phenomena were observed when ACC, the precursor of ethylene, was added to the medium, whereas silver ions reversed these effects. However, tuber formation in vitro was suppressed by ethephon. This indicates a dual role of ethylene in the induction of tuber formation in potatoes: it had a positive effect by blocking the elongation of stolons and it suppressed tuber initiation.  相似文献   

2.
Application of ethephon slightly increased the growth of hyphae of Botrytis cinerea. A competitive inhibitor of ethylene binding, 2,5-norbornadiene (NBD), inhibited growth of hyphae and mycelium and retarded the development of Botrytis cinerea. Transfer of the mycelium from an atmosphere containing NBD to air relieved the inhibition, indicating that the NBD effects were non-toxic and reversible. Addition of exogenous ethylene to an atmosphere containing NBD (20 ml 1-1) effectively reduced the inhibition. Inhibition due to 40 ml 1–1 NBD was not relieved by ethylene at any of the concentrations tested; however, a positive effect of ethylene appeared following transfer of the mycelia to air. The results suggest that ethylene may be required for the growth and development of Botrytis cinerea.Abbreviations NBD 2,5-norbornadiene - ethephon 2-chloroethyl-phosphonic acid - PDA potato dextrose agar  相似文献   

3.
Symbiotic association between rhizobia and legumes results in the development of unique structures on roots, called nodules. Nodulation is a very complex process involving a variety of genes that control NOD factors (bacterial signaling molecules), which are essential for the establishment, maintenance and regulation of this process and development of root nodules. Ethylene is an established potent plant hormone that is also known for its negative role in nodulation. Ethylene is produced endogenously in all plant tissues, particularly in response to both biotic and abiotic stresses. Exogenous application of ethylene and ethylene-releasing compounds are known to inhibit the formation and functioning of nodules. While inhibitors of ethylene synthesis or its physiological action enhance nodulation in legumes, some rhizobial strains also nodulate the host plant intensively, most likely by lowering endogenous ethylene levels in roots through their 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Co-inoculation with ACC deaminase containing plant growth promoting rhizobacteria plus rhizobia has been shown to further promote nodulation compared to rhizobia alone. Transgenic rhizobia or legume plants with expression of bacterial ACC deaminase could be another viable option to alleviate the negative effects of ethylene on nodulation. Several studies have well documented the role of ethylene and bacterial ACC deaminase in development of nodules on legume roots and will be the primary focus of this critical review.  相似文献   

4.
The plant growth regulators, gibberellic acid (GA3), ethephon and chlormequat chloride (CCC) were sprayed on young lettuce, cauliflower and bean (Phaseolus vulgaris) plants, which had either been given or not been given a mechanically-induced stress (MIS) treatment. MIS was applied by brushing the plants with paper for 1.5 minutes each day. GA3 increased extension growth of bean and leaf length of lettuce in unbrushed plants as much as in brushed ones. CCC and ethephon were less effective at reducing the height of brushed bean plants compared to unbrushed ones. The effects of CCC on the growth of cauliflower and lettuce plants was not influenced by brushing, whereas unbrushed plants responded more readily to ethephon than did brushed ones. The effects of CCC on growth were generally similar to those of MIS whereas the effects of ethephon were in many ways different to MIS.The results are discussed in relation to the use of PGR and MIS treatments for modifying plant growth.  相似文献   

5.
<p>The diversity and taxonomic relationships of 83 bean-nodulating rhizobia indigenous to Ethiopian soils were characterized by PCR-RFLP of the internally transcribed spacer (ITS) region between the 16S and 23S rRNA genes, 16S rRNA gene sequence analysis, multilocus enzyme electrophoresis (MLEE), and amplified fragment-length polymorphism. The isolates fell into 13 distinct genotypes according to PCR-RFLP analysis of the ITS region. Based on MLEE, the majority of these genotypes (70%) was genetically related to the type strain of Rhizobium leguminosarum. However, from analysis of their 16S rRNA genes, the majority was placed with Rhizobium etli. Transfer and recombination of the 16S rRNA gene from presumptively introduced R. etli to local R. leguminosarum is a possible theory to explain these contrasting results. However, it seems unlikely that bean rhizobia originating from the Americas (or Europe) extensively colonized soils of Ethiopia because Rhizobium tropici, Rhizobium gallicum, and Rhizobium giardinii were not detected and only a single ineffective isolate of R. etli that originated from a remote location was identified. Therefore, Ethiopian R. leguminosarum may have acquired the determinants for nodulation of bean from a low number of introduced bean-nodulating rhizobia that either are poor competitors for nodulation of bean or that failed to survive in the Ethiopian environment. Furthermore, it may be concluded from the genetic data presented here that the evidence for separating R. leguminosarum and R. etli into two separate species is inconclusive.  相似文献   

6.
The effect of Streptomyces albovinaceus (S-22) and Bacillus sp. (B1) on the growth response, nodulation, nutrition and nitrogenase activities of faba bean (Vicia faba) varieties infected with Glomus mosseae under pot conditions in sterile soil amended with chitin was studied. The growth, nodulation, nutrients content and nitrogenase activity of mycorrhiza-treated plants of Giza-667 were significantly increased compared to untreated ones. Such increases were related to the increase in mycorrhizal root infection. Amendment of soil with chitin alone reduced the growth, nodulation, total nitrogen contents and nitrogenase activities of mycorrhiza-treated faba bean plants (Giza-667) compared to untreated plants. Inoculation of plants with S. albovinaceus or Bacillus sp. significantly increased the level of mycorrhizal roots infection, but addition of chitin to the soil in combination with Bacillus sp. reduced the mycorrhizal infection of faba bean roots. Highest phosphorus contents of faba bean Giza-667 were recorded after G. mosseae inoculation in the presence of all treatments. Similar results were observed for the other varieties. The microbial populations were significantly increased in rhizospheres amended with chitin. Such increases were not in response to the mycorrhizal inoculation. Generally, the microflora of faba bean rhizospheres was increased after treatment with G. mosseae in the absence of chitin amendment alone compared with non-mycorrhizal rhizospheres.  相似文献   

7.
Buffered solutions are used commonly to introduce chemical inhibitors and promoters of ethylene synthesis into plant tissues. Vacuum infiltration of preclimacteric muskmelon (Cucumis melo L.) fruit tissue with a buffer (50 mM MES, pH 6.1) immediately after excision inhibited the wound-induced increase in ethylene production, but it did not suppress the accumulation of 1-aminocyclopropane-l-carboxylic acid (ACC) during the 48 h following injury. The inhibition of ethylene production by infiltration was not reversed by treatment with ACC. If the injured tissue was allowed to age for 3 h before treatment, wound-induced ethylene production in tissue samples was not inhibited by vacuum infiltration with aqueous buffer. The results indicate that infiltration of melon fruit tissue with a liquid medium does not block the development of wound-induced ethylene production by either limiting ACC or inhibiting the ongoing conversion of ACC to ethylene. Liquid infiltration of the tissue appears to interfere with the initiation of physiological events during the first 3 h after wounding that are critical for the subsequent conversion of ACC to ethylene.  相似文献   

8.
Plant genotypes that limit nodulation by indigenous rhizobia while nodulating normally with inoculant-strain nodule occupancy in Phaseolus vulgaris. In this study, eight of nine Rhizobium tropici strains and six of 15 Rhizobium etli strains examined, showed limited ability to nodulate and fix nitrogen with the two wild P. vulgaris genotypes G21117 and G10002, but were effective in symbiosis with the cultivated bean genotypes Jamapa and Amarillo Gigante. Five of the R. etli strains restricted in nodulation by G21117 and G10002 produced an alkaline reaction in yeast mannitol medium. In a competition experiment in which restricted strains were tested in 1:1 mixtures with the highly effective R. etli strain CIAT632, the restricted strains produced a low percentage of the nodules formed on G2117, but produced over 40% of the nodules formed on Jamapa. The interaction of the four Rhizobium strains with the two bean genotypes, based on the percentage of nodules formed, was highly significant (P<0.001).  相似文献   

9.
Summary Fifteen isolates of nodule bacteria were isolated from root and stem nodules ofAeschynomene aspera and they were characterized as Rhizobium by well known laboratory tests. All these isolates together with other efficient strains of known rhizobia belonging to different cross-inoculation groups were evaluated for their nodulation abilities onAeschynomene aspera, Cajanus cajan (pigeon pea),Cicer arietinum (chickpea),Pisum sativum (pea),Trifolium repens (clover),Medicago sativa (lucerne),Lens culinaris (lentil),Glycine max (soybean),Vigna sinensis (cowpea),Vigna radiata (mung bean),Vigna mungo (urd bean) andArachis hypogea (peanut). The results demonstrated that Rhizobium fromAeschynomene could form nodules only on its homologous host (Aeschynomene) but not on other legumes tested. Secondly, none of the rhizobia of other cross-inoculation groups could nodulateA. aspera.  相似文献   

10.
Growth of most Rhizobium strains is inhibited by mimosine, a toxin found in large quantities in the seeds, foliage and roots of plants of the genera Leucaena and Mimosa. Some Leucaena-nodulating strains of Rhizobium can degrade mimosine (Mid+) and are less inhibited by mimosine in the growth medium than the mimosine-nondegrading (Mid-) strains. Ten Mid+ strains were identified that did not degrade 3-hydroxy-4-pyridone (HP), a toxic intermediate of mimosine degradation. However, mimosine was completely degraded by these strains and HP was not accumulated in the cells when these strains were grown in a medium containing mimosine as the sole source of carbon and nitrogen. The mimosine-degrading ability of rhizobia is not essential for nodulation of Leucaena species, but it provides growth advantages to Rhizobium strains that can utilize mimosine, and it suppresses the growth of other strains that are sensitive to this toxin.  相似文献   

11.
Summary The effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and two inhibitors, silver thiosulfate (STS) and aminoethoxyvinylglycine (AVG), were tested in yellow passionfruit (Passiflora edulis f. flaricarpa Degener) acillary cultured in vitro. The organogenic responses were assessed by the number of buds per explant, mean leaf area per explant, and shoot length. ACC-supplemented medium significantly inhibited all evaluated responses at both concentrations tested. When ethylene action and biosynthesis were inhibited, a significant increase in the number of developed buds and average leaf area was observed. Accumulated ethylene and its accumulation rate were significantly greater at 10 μM ACC, with a maximum production rate deteeted: at the 14th day and a decline at the 21st day. The results suggest beneficial effects of ethylene inhibitors on in vitro development of axillary buds and their reliability for use as an alternative approach to evaluate sensitivity of Passiflora species to ethylene. Even though shoot elongation did not differ from that of the control, the inhibition of the ethylene action and its biosynthesis by AVG and STS, respectively, significantly enhanced the number of buds per explant and leaf area.  相似文献   

12.
Indigenous rhizobial population is among the factors which influence increased crop yield through inoculation with elite strains. In this study, we compared in greenhouse conditions the competitiveness of Rhizobium strain ISRA 355 for nodulation of the common bean (Phaseolus vulgaris) cultivated in different unsterile Senegal soils in terms of pH, N and C contents. The strain ISRA 355 produced a stable GUS+ transconjugant which was used for competition with indigenous soil rhizobia in six localities. At Bayakh, the transconjugant ISRA 355gusA was less competitive than the indigenous rhizobial strains, whereas in the other localities, it was more competitive since it occupied more than 90% of the nodules. Thus the Rhizobium strain ISRA 355 should be used for successfully inoculating the common bean in Senegal soils.  相似文献   

13.
The addition of 1-aminocyclopropane-1-carboxylic acid (ethylene precursor), or 2-chloroethylphosphonic acid (ethephon, an ethylene-releasing compound) decreased root dry weight and l-DOPA (l-3,4-dihydroxyphenylalanine) accumulation in hairy root cultures of Stizolobium hassjoo. The inhibition caused by ethephon-mediated ethylene release was alleviated by 0.5 mg CoCl2 l–1 as an inhibitor of ethylene biosynthesis. The action of ethylene was inhibited by 1.5 mg AgNO3 l–1. Ethylene thus lowers hairy root formation and l-DOPA production; CoCl2 decreases ethylene formation leading to a considerably improved root dry weight and l-DOPA production.  相似文献   

14.
The relationship between numbers of rhizobia and nodulation response of legumes is of considerable practical importance. Experiments were done under controlled conditions to determine the influence of numbers of Rhizobium leguminosarum biovar. trifolii on nodulation of arrowleaf clover (Trifolium vesiculosum Savi.) and crimson clover (T. incarnatum L.). Numbers of rhizobia in excess of 1000 per seed did not substantially increase earliness of nodulation or total number of nodules formed on the taproot. Nodules, however, were formed nearer the top of the taproot as numbers of rhizobia increased to 100,000 per seed. Delayed inoculation experiments indicated that nodulation sites for these clovers only remained susceptible to infection for less than 1 day. Delaying inoculation for 4 days resulted in only a 1 to 2 day delay in nodulation for arrowleaf and crimson clovers respectively and no delay for subterranean clover (T. subterraneum L.). Apparently, larger seedlings nodulated faster.  相似文献   

15.
Summary Physiological and symbiotic characteristics were identified in fast-growing (FG)Rhizobium japonicum. Carbon nutritional patterns linked these rhizobia to other FG rhizobia. They were able to use hexoses, pentoses, disaccharides, trioses, and organic acids for growth, but they were unable to use dulcitol or citrate. These rhizobia produced acid with all carbon sources except intermediates of the Krebs cycle. FGR. japonicum showed no vitamin requirements and were tolerant to 1% NaCl but not to 2%. They nodulated cowpea, pigeon pea, and mung bean but not peanut. Effective, nitrogen-fixing symbioses were observed only with cowpea and pigeon pea. In addition, FGR. japonicum formed effective symbioses with Asian-type soybeans. We concluded that although the physiological characteristics of FGR. japonicum were similar to other FG rhizobia, their symbiotic properties were similar to slow-growing rhizobia of the cowpea miscellany.  相似文献   

16.
Agriculture depends heavily on biologically fixed nitrogen from the symbiotic association between rhizobia and plants. Molecular nitrogen is fixed by differentiated forms of rhizobia in nodules located on plant roots. The phytohormone, ethylene, acts as a negative factor in the nodulation process. Recent discoveries suggest several strategies used by rhizobia to reduce the amount of ethylene synthesized by their legume symbionts, decreasing the negative effect of ethylene on nodulation. At least one strain of rhizobia produces rhizobitoxine, an inhibitor of ethylene synthesis. Active 1-aminocyclopropane-1-carboxylate (ACC) deaminase has been detected in a number of other rhizobial strains. This enzyme catalyzes the cleavage of ACC to alpha-ketobutyrate and ammonia. It has been shown that the inhibitory effect of ethylene on plant root elongation can be reduced by the activity of ACC deaminase.  相似文献   

17.
The effects of inoculum level and lime-pelleting were studied in an acid soil with respect to the nodulation and growth of lucerne (Medicago sativa cv Resis) and the population dynamics of Rhizobium meliloti. In small root-boxes (rhizotrons), the in-situ survival of inoculated rhizobia was studied in the micro-environment around the seed for a period of 12 days after sowing. During the initial 24 hours, a strong increase in rhizobial numbers was measured, concomitantly with the development of roots. As a result of lime-pelleting, rhizobial numbers were higher only at 3 days after sowing (P<0.05). Later, this difference diminished steadily. Addition of lime did not increase the adhesion of the rhizobia to the seedling tap root. Plant responses to inoculation were studied in pots. To obtain optimal nodulation, the soil had to be neutralized around the seed with lime and at least 105 cells of R. meliloti were required. With more than 105 rhizobia per seed, lime-pelleting increased the number of crown-nodulated seedlings from 24% to 77%. Higher numbers of rhizobia could not compensate the effect of lime. A strong correlation was found between crown nodulation, nitrogen content and dry weight of the shoots.  相似文献   

18.
Summary Conditions and techniques for achieving good nodulation ofPhaseolus vulgaris L. in continuously aerated solution were developed from greenhouse experiments.If nodules had been established, their growth and activity and the growth of the plant were at least as good in solution culture as in gravel culture. Nodule formation was observed within 10 days of inoculation in small volumes of solution culture (1 liter). In large volumes (19 liters), similarly prompt nodulation occurred only if the plants were inoculated before or immediately after the seedlings were transferred to the solution from gravel or vermiculite; and the nodules were restricted to the roots that had been present at the time of transfer. Delayed inoculation, 2 days after transfer to large volume solutions, led to sparse nodulation observed only after 3 weeks. Delay or inhibition of nodulation in large volumes of solution could not be explained by failute of bacteria to colonize roots or by sparsity of root hairs.Nodule initiation in solution culture was severely inhibited at pH below 5.4. An additional problem in growing N2-dependent bean in solution culture was the buildup of Cl to toxic levels in the plant in nitrate-free media, even at solution concentrations as low as 0.4 mM Cl. Daily addition of 0.5 to 1.0 mg N per plant delayed nodule growth and activity slightly, but increased plant growth and alleviated the severe N-deficiency that otherwise developed before the onset of N2-fixation.  相似文献   

19.
为发掘和利用青海冷凉地区蚕豆优良的根瘤菌种质资源,确定根瘤菌的接种效应。将分离、纯化、分子鉴定的16株蚕豆根瘤菌通过盆栽回接试验的方法进行筛选。结果表明,筛选出6株根瘤菌,它们与青海13号蚕豆共生匹配效果较好,共生固氮能力强,促进蚕豆生长效果明显。  相似文献   

20.
Since Phaseolus vulgaris (L) is poorly nodulated in all regions of Tunisia where this crop is grown, the response of common-bean lines CocoT and Flamingo to inoculation with reference Rhizobium tropici CIAT 899 or native rhizobia, namely Sinorhizobium fredii 1a6, Rhizobium etli 12a3, and Rhizobium gallicum 8a3, was studied in a field station. Since R. etli 12a3 was found to be the most effective native rhizobium, it was subsequently compared with R. tropici CIAT 899 in a broader study in two stations over 3 years. A significant interaction between bean and rhizobia was observed for nodule number, shoot dry weight, grain yield, and contents of nitrogen and chlorophyll. The native rhizobia was more efficient than CIAT899 for Flamingo, though not for CocoT. The Enzyme-linked immunosorbent assay technique was used with polyclonal antibody to assess the occupancy in nodule and persistence in soil of the inoculated rhizobia. For both stations the nodule occupancy was 100% during the first year for each rhizobium, but during the next 2 years, between 7 and 15% of nodules were formed by the rhizobia inoculated in the neighboring plot. It is concluded that the first-year inoculation is sufficient to maintain an adequate rate of nodulation during three growth cycles, and that the native R etli can be recommended for the common-bean inoculation in similar soils of Tunisia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号