首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

9.
Flower patterning is determined by a complex molecular network but how this network functions remains to be elucidated. Here, we develop an integrative modeling approach that assembles heterogeneous data into a biologically coherent model to allow predictions to be made and inconsistencies among the data to be found. We use this approach to study the network underlying sepal development in the young flower of Arabidopsis thaliana. We constructed a digital atlas of gene expression and used it to build a dynamical molecular regulatory network model of sepal primordium development. This led to the construction of a coherent molecular network model for lateral organ polarity that fully recapitulates expression and interaction data. Our model predicts the existence of three novel pathways involving the HD-ZIP III genes and both cytokinin and ARGONAUTE family members. In addition, our model provides predictions on molecular interactions. In a broader context, this approach allows the extraction of biological knowledge from diverse types of data and can be used to study developmental processes in any multicellular organism.  相似文献   

10.
Syntaxins are a large group of proteins found in all eukaryotes involved in the fusion of transport vesicles to target membranes. Twenty-four syntaxins grouped into 10 gene families are found in the model plant Arabidopsis thaliana, each group containing one to five paralogous members. The Arabidopsis SYP2 and SYP4 gene families contain three members each that share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) orthologs of the SYP2 and SYP4 gene families (Pep12p and Tlg2p, respectively) indicate that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruptions in two genes from each family, finding that disruption of individual syntaxins from these families is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption with its cognate transgene indicated that the lethality is linked to the loss of the single syntaxin gene. Thus, it is clear that each syntaxin in the SYP2 and SYP4 families serves an essential nonredundant function.  相似文献   

11.
While transposons have traditionally been viewed as genomic parasites or "junk DNA," the discovery of transposon-derived host genes has fueled an ongoing debate over the evolutionary role of transposons. In particular, while mobility-related open reading frames have been known to acquire host functions, the contribution of these types of events to the evolution of genes is not well understood. Here we report that genome-wide searches for Mutator transposase-derived host genes in Arabidopsis thaliana (Columbia-0) and Oryza sativa ssp. japonica (cv. Nipponbare) (domesticated rice) identified 121 sequences, including the taxonomically conserved MUSTANG1. Syntenic MUSTANG1 orthologs in such varied plant species as rice, poplar, Arabidopsis, and Medicago truncatula appear to be under purifying selection. However, despite the evidence of this pathway of gene evolution, MUSTANG1 belongs to one of only two Mutator-like gene families with members in both monocotyledonous and dicotyledonous plants, suggesting that Mutator-like elements seldom evolve into taxonomically widespread host genes.  相似文献   

12.
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.  相似文献   

13.
14.
15.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

16.
The proteins of the MYB superfamily play central roles in developmental processes and defence responses in plants. Sixty unique wheat MYB genes that contain full-length cDNA sequences were isolated. These 60 genes were grouped into three categories, namely one R1R2R3-MYB, 22 R2R3-MYBs, and 37 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the 22 wheat R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily among wheat, rice, and Arabidopsis revealed that the putative functions of some wheat MYB proteins were clustered into the Arabidopsis functional clades. Tissue-specific expression profiles showed that most of the wheat MYB genes were expressed in all of the tissues examined, suggesting that wheat MYB genes take part in multiple cellular processes. The expression analysis during abiotic stress identified a group of MYB genes that respond to one or more stress treatments. The overexpression of a salt-inducible gene, TaMYB32, enhanced the tolerance to salt stress in transgenic Arabidopsis. This study is the first comprehensive study of the MYB gene family in Triticeae.  相似文献   

17.
HD-Zip转录因子基因是植物中特有的一类蛋白家族,在植物生长发育和逆境应答胁迫过程中发挥重要作用。HD-Zip转录因子基因是由高度保守的同源异型结构域(HD)和亮氨酸拉链域(LZ)结构域构成的特殊结构模型。杨树HD-Zip转录因子家族共有63个基因,可被分为HD-ZipⅠ、HD-ZipⅡ、HD-ZipⅢ和HD-ZipⅣ四个亚家族。本文利用RNA-Seq分析了盐胁迫条件下HD-Zip基因家族在小黑杨根、茎、叶等不同组织的基因表达差异,从转录组水平揭示其应答胁迫环境的分子机制,结果表明,盐胁迫下在叶中有25个HD-Zip基因下调表达,21个基因上调表达;茎中有42个基因下调表达,11个基因上调表达;根中有26个基因下调表达,24个基因上调表达。另外,本文根据拟南芥HD-Zip转录因子家族基因的已知功能,预测了杨树HD-Zip转录因子同源基因的功能,并利用生物信息学方法分析了杨树HD-Zip转录因子蛋白序列的保守结构域、氨基酸组成和理化性质等,为进一步研究杨树HD-Zip转录因子基因功能提供参考。  相似文献   

18.
19.
Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) show similar physiological responses to iron deficiency, suggesting that homologous genes are involved. Essential gene functions are generally considered to be carried out by orthologs that have remained conserved in sequence and map position in evolutionarily related species. This assumption has not yet been proven for plant genomes that underwent large genome rearrangements. We addressed this question in an attempt to deduce functional gene pairs for iron reduction, iron transport, and iron regulation between Arabidopsis and tomato. Iron uptake processes are essential for plant growth. We investigated iron uptake gene pairs from tomato and Arabidopsis, namely sequence, conserved gene content of the regions containing iron uptake homologs based on conserved orthologous set marker analysis, gene expression patterns, and, in two cases, genetic data. Compared to tomato, the Arabidopsis genome revealed more and larger gene families coding for the iron uptake functions. The number of possible homologous pairs was reduced if functional expression data were taken into account in addition to sequence and map position. We predict novel homologous as well as partially redundant functions of ferric reductase-like and iron-regulated transporter-like genes in Arabidopsis and tomato. Arabidopsis nicotianamine synthase genes encode a partially redundant family. In this study, Arabidopsis gene redundancy generally reflected the presumed genome duplication structure. In some cases, statistical analysis of conserved gene regions between tomato and Arabidopsis suggested a common evolutionary origin. Although involvement of conserved genes in iron uptake was found, these essential genes seem to be of paralogous rather than orthologous origin in tomato and Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号