首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we developed for in vitro splicing, we prepared lysates from cells transfected with tagged EJC proteins and studied the association of these proteins with pre-mRNA, splicing intermediates, and mRNA, as well as formation of the EJC during splicing. Three of the EJC components, Aly/REF, RNPS1, and SRm160, are found on pre-mRNA by the time the spliceosome is formed, whereas Upf3b associates with splicing intermediates during or immediately after the first catalytic step of the splicing reaction (cleavage of exon 1 and intron-lariat formation). In contrast, Y14 and magoh, which remain stably associated with mRNA after export to the cytoplasm, join the EJC during or after completion of exon-exon ligation. These findings indicate that EJC formation is an ordered pathway that involves stepwise association of components and is coupled to specific intermediates of the splicing reaction.  相似文献   

3.
We recently reported that spliceosomes alter messenger ribonucleoprotein particle (mRNP) composition by depositing several proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. When assembled in vitro, this so-called 'exon-exon junction complex' (EJC) contains at least five proteins: SRm160, DEK, RNPS1, Y14 and REF. To better investigate its functional attributes, we now describe a method for generating spliced mRNAs both in vitro and in vivo that either do or do not carry the EJC. Analysis of these mRNAs in Xenopus laevis oocytes revealed that this complex is the species responsible for enhancing nucleocytoplasmic export of spliced mRNAs. It does so by providing a strong binding site for the mRNA export factors REF and TAP/p15. Moreover, by serving as an anchoring point for the factors Upf2 and Upf3, the EJC provides a direct link between splicing and nonsense-mediated mRNA decay. Finally, we show that the composition of the EJC is dynamic in vivo and is subject to significant evolution upon mRNA export to the cytoplasm.  相似文献   

4.
Nonsense‐mediated mRNA decay (NMD) is a translation‐linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre‐mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct—we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD.  相似文献   

5.
6.
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation-terminating ribosome and then with a downstream exon-junction complex (EJC), which is deposited at exon-exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon-exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3'-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5'-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation-termination codon and a downstream exon-exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3'-UTR in the 5'-to-3' direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.  相似文献   

7.
Messenger RNAs with premature translation termination codons (PTCs) are degraded by nonsense-mediated mRNA decay (NMD). In mammals, PTCs are discriminated from physiological stop codons by a process thought to involve the splicing-dependent deposition of an exon junction complex (EJC), EJC-mediated recruitment of Upf3, and Upf2 binding to the N terminus of Upf3. Here, we identify a conserved domain of hUpf3b that mediates an interaction with the EJC protein Y14. Tethered function analysis shows that the Y14/hUpf3b interaction is essential for NMD, while surprisingly the interaction between hUpf3b and hUpf2 is not. Nonetheless, hUpf2 is necessary for NMD mediated by tethered Y14. RNAi-induced knockdown and Y14 repletion of siRNA-treated cells implicates Y14 in the degradation of beta-globin NS39 mRNA and demonstrates that Y14 is required for NMD induced by tethered hUpf3b. These results uncover a direct role of Y14 in NMD and suggest an unexpected hierarchy in the assembly of NMD complexes.  相似文献   

8.
9.
Lykke-Andersen J  Shu MD  Steitz JA 《Cell》2000,103(7):1121-1131
Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are complexed with hUpf1, in intact cells hUpf3a and hUpf3b are nucleocytoplasmic shuttling proteins, hUpf2 is perinuclear, and hUpf1 cytoplasmic. hUpf3a and hUpf3b associate selectively with spliced beta-globin mRNA in vivo, and tethering of any hUpf protein to the 3'UTR of beta-globin mRNA elicits NMD. These data suggest that assembly of a dynamic hUpf complex initiates in the nucleus at mRNA exon-exon junctions and triggers NMD in the cytoplasm when recognized downstream of a translation termination site.  相似文献   

10.
11.
Translation of spliced mRNAs is enhanced by exon junction complex (EJC), which is deposited on mRNAs as a result of splicing. Although this phenomenon itself is well known, the underlying molecular mechanism remains poorly understood. Here we show, using siRNAs against Y14 and eIF4AIII and spliced or intronless constructs that contain different types of internal ribosome entry sites (IRESes), that Y14 and eIF4AIII increase translation of spliced mRNAs before and after formation of the 80S ribosome complex, respectively. These results suggest that EJC modulates translation of spliced mRNA at multiple steps.  相似文献   

12.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   

13.
BACKGROUND: Splicing of pre-mRNA in eukaryotes imprints the resulting mRNA with a specific multiprotein complex, the exon-exon junction complex (EJC), at the sites of intron removal. The proteins of the EJC, Y14, Magoh, Aly/REF, RNPS1, Srm160, and Upf3, play critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. Y14 and Magoh are of particular interest because they remain associated with the mRNA in the same position after its export to the cytoplasm and require translation of the mRNA for removal. This tenacious, persistent, splicing-dependent, yet RNA sequence-independent, association suggests an important signaling function and must require distinct structural features for these proteins. RESULTS: We describe the high-resolution structure and biochemical properties of the highly conserved human Y14 and Magoh proteins. Magoh has an unusual structure comprised of an extremely flat, six-stranded anti-parallel beta sheet packed against two helices. Surprisingly, Magoh binds with high affinity to the RNP motif RNA binding domain (RBD) of Y14 and completely masks its RNA binding surface. CONCLUSIONS: The structure and properties of the Y14-Magoh complex suggest how the pre-mRNA splicing machinery might control the formation of a stable EJC-mRNA complex at splice junctions.  相似文献   

14.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.  相似文献   

15.
Translation of messenger RNAs (mRNAs) with premature termination codons produces truncated proteins with potentially deleterious effects. This is prevented by nonsense-mediated mRNA decay (NMD) of these mRNAs. NMD is triggered by ribosomes terminating upstream of a splice site marked by an exon-junction complex (EJC), but also acts on many mRNAs lacking a splice junction after their termination codon. We developed a genome-wide CRISPR flow cytometry screen to identify regulators of mRNAs with premature termination codons in K562 cells. This screen recovered essentially all core NMD factors and suggested a role for EJC factors in degradation of PTCs without downstream splicing. Among the strongest hits were the translational repressors GIGYF2 and EIF4E2. GIGYF2 and EIF4E2 mediate translational repression but not mRNA decay of a subset of NMD targets and interact with NMD factors genetically and physically. Our results suggest a model wherein recognition of a stop codon as premature can lead to its translational repression through GIGYF2 and EIF4E2.  相似文献   

16.
Although it is universally accepted that protein synthesis occurs in the cytoplasm, the possibility that translation can also take place in the nucleus has been hotly debated. Reports have been published claiming to demonstrate nuclear translation, but alternative explanations for these results have not been excluded, and other experiments argue against it. Much of the appeal of nuclear translation is that functional proofreading of newly made mRNAs in the nucleus would provide an efficient way to monitor mRNAs for the presence of premature termination codons, thereby avoiding the synthesis of deleterious proteins. mRNAs that are still in the nucleus-associated fraction of cells are subject to translational proofreading resulting in nonsense-mediated mRNA decay and perhaps nonsense-associated alternate splicing. However, these mRNAs are likely to be in the perinuclear cytoplasm rather than within the nucleus. Therefore, in the absence of additional evidence, we conclude that nuclear translation is unlikely to occur.  相似文献   

17.
The nonsense-mediated mRNA decay (NMD) system is an RNA surveillance system that degrades mRNAs possessing premature translation termination codons (PTCs). Although NMD factors are well conserved in eukaryotes, it is speculated that the contexts of those termination codons that are subject to NMD are different depending on the organism. Context analysis of termination codons that are recognized by the plant NMD system would clarify NMD target mRNAs in plants, and contribute to our understanding of its biological relevance in plants. In the present study we analyzed the positions of termination codons that were recognized as PTCs using an Agrobacterium transient expression assay, i.e. the accumulation of a series of plant mRNAs with nonsense mutations in different contexts was tested in plants. The results indicated that termination codons that are located distant from the mRNA 3' termini or >50 nucleotides upstream of the 3'-most exon-exon junction are recognized as substrates for NMD.  相似文献   

18.
MLN51 is a nucleocytoplasmic shuttling protein that is overexpressed in breast cancer. The function of MLN51 in mammals remains elusive. Its fly homolog, named barentsz, as well as the proteins mago nashi and tsunagi have been shown to be required for proper oskar mRNA localization to the posterior pole of the oocyte. Magoh and Y14, the human homologs of mago nashi and tsunagi, are core components of the exon junction complex (EJC). The EJC is assembled on spliced mRNAs and plays important roles in post-splicing events including mRNA export, nonsense-mediated mRNA decay, and translation. In the present study, we show that human MLN51 is an RNA-binding protein present in ribonucleo-protein complexes. By co-immunoprecipitation assays, endogenous MLN51 protein is found to be associated with EJC components, including Magoh, Y14, and NFX1/TAP, and subcellular localization studies indicate that MLN51 transiently co-localizes with Magoh in nuclear speckles. Moreover, we demonstrate that MLN51 specifically associates with spliced mRNAs in co-precipitation experiments, both in the nucleus and in the cytoplasm, at the position where the EJC is deposited. Most interesting, we have identified a region within MLN51 sufficient to bind RNA, to interact with Magoh and spliced mRNA, and to address the protein to nuclear speckles. This conserved region of MLN51 was therefore named SELOR for speckle localizer and RNA binding module. Altogether our data demonstrate that MLN51 associates with EJC in the nucleus and remains stably associated with mRNA in the cytoplasm, suggesting that its overexpression might alter mRNA metabolism in cancer.  相似文献   

19.
Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment.  相似文献   

20.
The protein Mago provides a link between splicing and mRNA localization   总被引:5,自引:0,他引:5  
The proteins Mago and Y14 are evolutionarily conserved binding partners. Y14 is a component of the exon–exon junction complex (EJC), deposited by the spliceosome upstream of messenger RNA (mRNA) exon–exon junctions. The EJC is implicated in post-splicing events such as mRNA nuclear export and nonsense-mediated mRNA decay. Drosophila Mago is essential for the localization of oskar mRNA to the posterior pole of the oocyte, but the functional role of Mago in other species is unknown. We show that Mago is a bona fide component of the EJC. Like Y14, Mago escorts spliced mRNAs to the cytoplasm, providing a direct functional link between splicing and the downstream process of mRNA localization. Mago/Y14 heterodimers are essential in cultured Drosophila cells. Taken together, these results suggest that, in addition to its specialized function in mRNA localization, Mago plays an essential role in other steps of mRNA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号