首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basal level of benzo(a)pyrene monooxygenase, epoxide hydrolase and glutathione S-transferase activity as well as the content of cytochrome P-450 were found the same in both compared benzo(a)pyrene (BP) sensitive D. simulans strain 364yv and BP-resistant wild one (Turku). Phenobarbital pretreatment resulted in the same increase level of these enzyme activities in both strains. BP-pretreatment of 364yv flies decreased the amount of the cytochrome P-450 but raised up the turnover of BP per molecule of cytochrome P-450. SDS-polyacrylamide gel electrophoresis of the microsomal proteins from BP-pretreated 364yv flies (but not from Turku) showed an increased hemoprotein content in the 56000 band. The relationship between BP-sensitivity of the strain 364yv and BP-induced aberrant isoform of the cytochrome P-450 has been discussed.  相似文献   

2.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

3.
1. Liver microsomes from rats were considerably more active in metabolizing benzo[f]quinoline (B f Q) than those from brown bullheads (Ictalurus nebulosus). 2. The main B f Q metabolites formed by both rat and brown bullhead liver microsomes were qualitatively similar and included B f Q-7,8-dihydrodiol, B f Q-9,10-dihydrodiol, B f Q-N-oxide, 7-hydroxy B f Q, and 9-hydroxy B f Q. 3. The liver microsomes from control brown bullheads and rats metabolized B f Q primarily at the 7,8-and 9,10-positions, respectively, whereas in the case of microsomes from 3-methylcholanthrene (3-MC)-treated rats or brown bullheads, the major site of metabolic attack was the 7,8-position. 4. A 3-MC-type of cytochrome P-450 appears to be primarily responsible for the oxidation of B f Q by control brown bullhead liver microsomes, whereas a phenobarbital-inducible type of cytochrome P-450 seems to be involved in the metabolism of B f Q by control rat liver microsomes.  相似文献   

4.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

5.
The involvement of cytochrome P-450 isozymes in the activation of benzo[a]pyrene (BP) by human placental and liver microsomes was studied in vitro using monoclonal antibodies (Mab) toward the major 3-methylcholanthrene (MC)-inducible and phenobarbital-inductible rat liver P-450 isozymes (Mab 1-7-1 and Mab 2-66-3, respectively). Microsomes from human placenta and liver and rat liver were incubated with BP and DNA, and BP-diolepoxide-DNA (BPDE-DNA) adducts were measured by synchronous fluorescence spectrophotometry (SFS). The only BP metabolite giving the same fluorescence peak as chemically modified BPDE-DNA was BP-7,8-dihydrodiol. Five (smokers) out of 29 human placentas (smokers and nonsmokers), and five out of nine human livers were able to metabolically activate BP to BPDE-DNA adducts in this system. The Mab 1-7-1 totally inhibited the formation of BPDE-DNA adducts in placental microsomal incubations. Inhibition using rat or human liver microsomes was 50-60% and about 90%, respectively. The Mab 2-66-3 had no effect in any of the microsome types. Adduct formation was inhibited more strongly and at lower concentrations of Mab 1-7-1 compared with the inhibition of AHH activity. This study is a clear indication of the major role of P-450IA1 (P-450c) in human placenta and probably P-450IA2 (P-450d) in human liver in BP activation, while other isozymes also take part in the activation in rat liver. Furthermore, this clearly indicates that AHH activity and BP activation are not necessarily associated.  相似文献   

6.
To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo[a]pyrene (BP) to DNA and formation of the labile adduct 7-(benzo[a]pyren-6-yl)guanine (BP-N7Gua) was investigated. This adduct arises from the reaction of the BP radical cation at C-6 with the nucleophilic N-7 of the guanine moiety. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-[(4,6-dichloro-o-biphenyl)oxy]ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. Although cysteine had no effect on the microsome-catalyzed processes, glutathione and p-methoxythiophenol inhibited BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The decreased levels of binding of BP to DNA in the presence of glutathione or p-methoxythiophenol are matched by decreased amounts of BP-N7Gua adduct and of stable BP-DNA adducts detected by the 32P-postlabeling technique. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.  相似文献   

7.
Metabolism of benzo(a)pyrene (BP) and 7,8-dihydrodiol by 3-methylcholanthrene (MC)-induced rat liver microsomes are both subject to severe inhibition by primary metabolites of BP, which was analyzed by determining individual inhibition constants for all primary BP metabolites for both BP and 7,8-dihydrodiol metabolism. Monooxygenation of 7,8-dihydrodiol was, surprisingly, 5 to 10 times more sensitive than monooxygenation of BP to inhibition by all primary metabolites, even though both reactions require the same enzyme, cytochrome P-450c. Two representative products, 1,6-quinone and 9-phenol, were both strong, competitive inhibitors of BP metabolism with Ki values of 0.12 and 0.74 microM, respectively. The total effect of product inhibition on the overall reactions was determined by fitting progress curves of BP, 7,8-dihydrodiol, and anti-7,8-dihydrodiol 9,10-oxide (determined as 7,10/8,9-tetrol) over a range of BP concentrations to integrated steady-state equations using experimental Vmax and Km values. The effective product inhibition factors for BP and 7,8-dihydrodiol metabolism, determined from progress curve fits, were only 2-fold higher than the corresponding calculated theoretical values. The effective product inhibition factors, obtained from progress curve analysis, confirmed that 7,8-dihydrodiol metabolism was substantially more sensitive to inhibition by primary BP metabolites than BP metabolism itself. This difference probably reflects the much higher affinity of cytochrome P-450c for BP (Kd = 6 nM), as compared to 7,8-dihydrodiol (Kd = 175 nM) that was established spectrophotometrically both for the purified cytochrome and for MC microsomes. The Km for BP metabolism is 50 to 100 times higher than the Kd, while the Km is similar to the Kd for 7,8-dihydrodiol metabolism. The discrepancy for BP between Km and Kd suggests that standard Michaelis-Menten kinetics may be perturbed by either slow substrate or product dissociation.  相似文献   

8.
The "fast" phase reduction of microsomal cytochromes P-450 and P-448 and their benz(a)pyrene (BP) hydroxylase activity was investigated as a function of menadione concentrations. Within a narrow concentration range (1.5-3 microM) menadione activates cytochrome P-448 reduction and the BP hydroxylase activity. At higher concentrations menadione inhibits cytochromes P-450 and P-448 reduction and BP hydroxylation with participation of the both cytochromes. These data suggest that menadione molecules present in membrane lipids serve as an additional electron carrier to cytochrome P-448, the active site of which is embedded into lipids. The activating effect is unobserved is case of cytochrome P-450 with an active site localized in the aqueous phase. The number of different BP metabolites formed at low (3 microM) menadione concentrations in the microsomes of rats induced with 3-methylcholanthrene (MC) and phenobarbital (PB) was compared. In PB-induced microsomes the amount of 7,8-dihydrodiol rises whereas the total content of BP metabolites decreases. Contrariwise, in MC-induced microsomes the synthesis of all BP metabolites is augmented. Menadione has a very weak effect on the ratio of different BP metabolites in PB- and MC-microsomes, but strongly inhibits the formation of more polar metabolites. This results in a marked reduction of the number of "dangerous" BP diolepoxides.  相似文献   

9.
Benzo[a]pyrene (BP) fluorescence-emission intensities in phospholipid micelles are quantitatively described over a broad range of lipid and BP concentrations by excitation that is linearly dependent upon BP concentration and an offsetting excimer quenching that is dependent upon the square of the BP concentration. The fluorescence of BP is quenched by the presence of cytochrome P-450c in proportion to the concentration of the cytochrome in the micelles and in accord with stoichiometric complex formation. Parallel optical titrations indicate a change in spin state of P-450c to a predominantly high-spin state that correlates directly with the percentage fluorescence quenching of complexed BP. Neither change occurs with five other purified forms of rat liver P-450 that have low activity in BP metabolism. N-Octylamine, a ligand that binds to the heme of P-450, competitively inhibits both the spin-state changes and the fluorescence quenching in equal proportion. The Kd for the interaction of BP with P-450c is exceptionally low (10 nM) relative to the Km for monooxygenation (ca. 1 microM). Decreasing the concentration of either dilauroylphosphatidylcholine or dioleoylphosphatidylcholine concomitantly increases the high-spin state (from 30% to 80%) of fully complexed P-450c and the fluorescence quenching (50-100%) of the complexed BP (half-maximal at 80 micrograms of lipid/mL). It is concluded that spin state and fluorescence quenching both reflect the same changes in the interaction of the BP with the P-450 heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Liver microsomal enzymes are essential for the detection of benzo[a]pyrene (B[a]P)-mediated mutagenesis in the Salmonella/mammalian microsome mutagenicity test and, furthermore, this mutagenicity is considerably enhanced by induction of hepatic enzymes involved with drug metabolism. Although Aroclor 1254 is most commonly used for induction of S9 enzymes, DDT is also capable of this induction. This paper reports a comparison of liver S9 fraction induced by the two agents: there is a marked difference in their concentration optima for metabolism of B[a]P; greater numbers of revertant colonies are seen with Aroclor-induced S9, which is optimal at a concentration of 10% (v/v), whereas DDT-induced S9 is optimal at 2.5% (v/v); Aroclor induces aryl hydrocarbon hydroxylase (AHH), cytochrome P-450 and epoxide hydrase while DDT induces only AHH, to about half the level detected in the Aroclor-induced S9 fraction. A comparison of metabolite distribution for Aroclor- and DDT-induced hepatic microsomes reveals quantitative differences only. DDT-induced microsomes yield a greater proportion of B[a]P-4,5-oxide and its metabolic product B[a]P-4,5-dihydrodiol than do Aroclor-induced microsomes. Time course studies on the mutagen half-life measured on the agar plate provides good evidence that metabolites responsible for mutagenicity were different for each inducer.  相似文献   

11.
The metabolism of benzo[a]pyrene (BP) in regenerating rat liver and the induction of enzyme-altered foci (EAF) in the liver of partially hepatectomized rats, treated with BP and promoted with 2-acetylaminofluorene (2-AAF)/CCl4 was investigated. The aim was to examine factors that might be of importance for the tumorigenicity of BP in the regenerating rat liver, such as cytochrome P-450 activity and glutathione levels. In regenerating rat liver, obtained 18 h after partial hepatectomy (PH), the amount of microsomal cytochrome P-450 was reduced by 20% whereas the level of glutathione was elevated by 15% and the cytosolic glutathione transferase activity towards chlorodinitrobenzene and (+/-)-7 beta,8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE) was unaffected. Microsomes from these animals had a reduced capacity to activate (-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BPD) to DNA-binding products but the pattern of BP metabolites was similar to that observed with control rat liver microsomes. Treatment of rats with 3-methylcholanthrene (MC, 50 mg/kg body wt.) increased cytochrome P-450 levels and glutathione transferase activity towards both substrates. Regenerating livers from these animals retained their cytochrome P-450 level and enzymatic activity towards BP and BPD. Regenerating rat liver microsomes from MC-treated animals were about 35 times more efficient in activating BPD than microsomes from uninduced, partially hepatectomized animals. Intraperitoneal administration of BP (50 mg/kg body wt.) 18 h after PH induced EAF in rats subsequently promoted with 2-AAF/CCl4. Pretreatment of rats with MC 66 h before PH and 84 h before BP administration, increased the number of EAF. In accordance with results by Tsuda et al. (Cancer Res., 40 (1980) 1157-1164), these studies demonstrate that BP is tumorigenic in regenerating rat liver, despite a reduced ability of the liver to activate this compound. Furthermore, MC, an inducer of certain cytochrome P-450 species ("aryl hydrocarbon hydroxylase"), potentiates the effect of BP.  相似文献   

12.
Conversion of benzo[a]pyrene (BP) to BP 7,8-dihydrodiol 9,10-oxides (DE) (measured as 7,10/8,9-tetrols) by untreated (UT) rat liver microsomes is over 10 times slower than following 3-methylcholanthrene (MC) induction. Time courses have been subjected to a kinetic analysis analogous to that previously reported for metabolism by MC-induced microsomes (J. Biol. Chem., 259 (1984) 13770–13776). Competition between BP and 7,8-dihydrodiol for P-450 is the major determinant of the rate of DE formation. Glucuronidation of quinones and phenols only increases the isolated BP metabolites including DE by 40%. This indicates far less inhibition by these products than for metabolism in MC-microsomes (4–6-fold). Thus stimulation may result from a decreased quinone-mediated oxidation of metabolites. In the presence of DNA, UT-microsomes metabolize BP to approximately equal amounts of 9-phenol-4,5-oxide (9-PO) and DE/DNA adducts. Addition of uridine diphosphoglucuronic acid (UDPGA) fails to enhance modification of DNA by DE, but formation of the 9-PO adduct is reduced as a result of lower free 9-phenol levels. The kinetic characteristics of BP metabolism by UT-microsomes are highly sensitive to the presence of very small but variable amounts (2–25 pmol/mg) of the very active cytochrome P-450c, which is the predominant form in MC-microsomes. The major effect of elevated levels of P-450c is an 8-fold increase in DE formation at low concentrations of BP due to a lowering of Km (7.9–2.6 μM) and an increase in the regioselectivity for DE formation from 7,8-dihydrodiol (5–15% of total BP metabolites). The formation of DE was directly correlated with the content of P-450c (r = 0.94). The presence of increased levels of P-450c in UT-microsomes is probably due to previous exposure of the animals to environmental inducers and is minimized by controlled housing and feeding.  相似文献   

13.
Benzo[a]pyrene (BP) and two of its major metabolites, the ultimate mutagen BP-4,5-oxide and the proximate mutagen trans-7,8-dihydro-7,8-dihydroxybenzo[a]pyrene (BP-7,8-diol) were investigated for mutagenicity in Salmonella typhimurium TA1538, TA98 and TA100 using an intrasanguineous host-mediated assay. BP and BP-4,5-oxide were not mutagenic under any experimental conditions. BP-7,8-diol was inactive with the strain TA1538 but was mutagenic with the strains TA98 and TA100. The effect was potentiated by pretreatment of the host mice with the cytochrome P-450 inducer 5,6-benzoflavone. We conclude: (i) one of the reasons for the observed insensitivity of the intrasanguineous host-mediated assay towards BP is that BP-4,5-oxide, which contributes to the microsome-mediated mutagenicity of BP, is inactive in the host-mediated assay; (ii) the finding that BP-7,8-diol is mutagenic in the host-mediated assay demonstrates that the lack of mutagenicity of BP is not intrinsic; (iii) the potentiated mutagenicity after treatment of the hosts with 5,6-benzoflavone suggests that cytochrome P-450 is more important in the activation of BP-7,8-diol in this system than other enzymes (e.g. prostaglandin synthase) that can also activate this compound in vitro.  相似文献   

14.
The interaction of rat liver microsomal cytochrome P-450c with potential benzo[a]pyrene (BP) metabolites has been compared with the binding of BP by optical and fluorescence spectroscopy. Fluorescence quenching of the phenolic derivatives of BP derives from 1:1 complex formation with P-450c, is a function of the position of the hydroxyl substituent, and correlates with the concomitant increase in high-spin cytochrome observed in parallel optical titrations. The proportion of high-spin cytochrome seen when P-450c was reconstituted in dilauroylphosphatidylcholine vesicles (60 micrograms/mL) ranged from about 7% for the 3- and 7-phenols to 75% for 11- and 12-phenols. BP and all 12 methyl-BP derivatives have comparable high affinities for P-450c (50-70% high spin). Kd determinations with purified P-450c indicated very strong binding of BP phenols that induce high-spin complexes (4-, 5-, 9-, 10-, 11-, and 12-phenols; Kd = 3-25 nM). Inhibition of n-octylamine binding by the 3- and 7-phenols indicated weak interactions (Kd = 80-90 nM), even though low-spin complexes were formed. Inhibition of BP metabolism catalyzed by P-450c with BP phenols correlated with their respective dissociation constants. These results suggest that phenolic substitution at certain positions on BP (1, 2, 3, 7, or 8) interferes with binding to the active site while substitutions at the other positions either enhance or have no effect on binding. BP dihydrodiols [including the (+)- and (-)-BP 7,8-dihydrodiols] were relatively ineffective in forming high-spin complexes (approximately 20%), and fluorescence quenching of dihydrodiols by P-450c also saturated at low levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A form of cytochrome P-450 generally catalyzing benzo[a]pyrene (B[a]P) hydroxylation was purified from liver microsomes of untreated rats on the basis of the catalytic activity. The purification procedures consisted of cholate solubilization and chromatography in 3 steps, on DEAE-Toyopearl (at room temperature), hydroxylapatite, and CM-Toyopearl columns. Cytochrome P-450 purified in this way (named P-450/B[a]P) was homogeneous on SDS-polyacrylamide gel electrophoresis, and the molecular weight was estimated to be 51,000. The absorption spectra of the oxidized form of P-450/B[a]P showed a Soret peak at 417 nm, characteristic of low-spin hemoprotein, and the Soret peak of the reduced cytochrome P-450-CO complex was at 451 nm. Immunochemical analysis of P-450/B[a]P indicated that P-450/B[a]P is immunologically distinct from P-450b (a major phenobarbital-inducible form of P-450) and P-450c (a major 3-methylcholanthrene-inducible form of P-450, which highly catalyzes the hydroxylation of B[a]P). B[a]P hydroxylase activity in liver microsomes of untreated rats was inhibited to about 20% by the P-450/B[a]P antibody. These results demonstrate that P-450/B[a]P is a different form of P-450 from P-450b and P-450c, and generally catalyzes B[a]P hydroxylation in liver microsomes of untreated rats.  相似文献   

16.
Oxidative metabolism of the carcinogen 6-fluorobenzo[c]phenanthrene (6-FB[c]Ph) was compared with that of benzo[c]phenanthrene (B[c]Ph) to elucidate the enhancement of carcinogenicity of B[c]Ph by the 6-fluoro substituent. Liver microsomes from untreated (control), phenobarbital-treated, and 3-methylcholanthrene-treated rats metabolized 6-FB[c]Ph at rates of 3.5, 1.5, and 7.7 nmol of products/nmol of cytochrome P-450/min, respectively. The rates of metabolism of B[c]Ph by the same microsomes were 2.9, 1.6, and 5.5 nmol of products/nmol of cytochrome P-450/min, respectively. Whereas the K-region 5,6-dihydrodiol was the major metabolite of B[c]Ph, the major metabolite of 6-FB[c]Ph was the K-region 7,8-oxide, which underwent slow rearrangement to an oxepin. Thus, the 6-fluoro substituent blocks oxidation at the 5,6-double bond and inhibits hydration of the K-region 7,8-oxide by epoxide hydrolase. Substitution with fluorine at C-6 caused an almost 2.5-fold increase in the percentages of the putative proximate carcinogens, i.e. benzo-ring dihydrodiols with bay-region double bonds, when liver microsomes from 3-methylcholanthrene-treated rats were used. Little or no increase was observed in their formation by liver microsomes from control or phenobarbital-treated rats. Interestingly, liver microsomes from control rats formed almost 3-fold as much 3,4-dihydrodiol as isosteric 9,10-dihydrodiol. The R,R-enantiomers of the 3,4- and 9,10-dihydrodiols and the S,S-enantiomer of the 7,8-dihydrodiol were predominantly formed by all three microsomal preparations.  相似文献   

17.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

18.
Metabolism of (+)-, (-)-, and (+/-)-trans-3,4-dihydroxy-3, 4-dihydrobenzo[c]phenanthrenes by liver microsomes from rats and mice and by a purified monooxygenase system reconstituted with cytochrome P-450c has been examined. Bay-region 3,4-diol 1,2-epoxides are minor metabolites of both enantiomers of the 3,4-dihydrodiol with liver microsomes from 3-methylcholanthrene-treated rats or with the reconstituted system (less than 10% of total metabolites). Microsomes from control and phenobarbital-treated rats and from control mice form higher percentages of these diol epoxides (13-36% of total metabolites). Microsomes from 3-methylcholanthrene-treated rats and cytochrome P-450c in the reconstituted system form exclusively the diol expoxide-1 diastereomer, in which the benzylic hydroxyl group and oxirane oxygen are cis to each other, from the (+)-(3S,4S)-dihydrodiol. The same enzymes selectively form the diol expoxide-2 diastereomer, with its oxirane oxygen and benzylic hydroxyl groups trans to each other, from the (-)-(3R,4R)-dihydrodiol (77% of the total diol epoxides). Liver microsomes from control rats show similar stereoselectivity whereas liver microsomes from phenobarbital-treated rats and from control mice are less stereoselective. Three bis-dihydrodiols and three phenolic dihydrodiols are also formed from the enantiomeric 3,4-dihydrodiols of benzo[c]phenanthrene. A single diastereomer of one of these bis-dihydrodiols with the newly introduced dihydrodiol group at the 7,8-position accounts for 79-88% of the total metabolites of the (-)-(3R,4R)-dihydrodiol formed by liver microsomes from 3-methylcholanthrene-treated rats or by the reconstituted system containing epoxide hydrolase. In contrast, the (+)-(3S,4S)-dihydrodiol is metabolized to two diastereomers of this bis-dihydrodiol, a third bis-dihydrodiol, and two phenolic dihydrodiols.  相似文献   

19.
A major form of pulmonary cytochrome P-450 (pulmonary P-450MC) was purified approximately 165-fold from lung microsomes of 3-methylcholanthrene (MC)-treated hamsters. The purified preparation contained 14.2 nmol of cytochrome P-450 (P-450) per mg protein and was essentially free from NADPH-cytochrome P-450 (cytochrome c)-reductase (NADPH-reductase) and epoxide hydrolase. Pulmonary P-450MC exhibits an absorption maximum at 446.5 nm in the difference spectrum of reduced hemoprotein-CO complex, and a low-spin state of ferric iron in the heme. By sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, the molecular weight of pulmonary P-450MC was estimated to be 56,000. In a reconstituted system, pulmonary P-450MC efficiently catalyzed benzo(a)pyrene (BP) hydroxylation, but showed low activities for 7-ethoxycoumarin O-deethylation and benzphetamine N-demethylation. In Ouchterlony double diffusion analysis, hamster pulmonary P-450MC reacted to the antibody prepared against rat hepatic P-450MC to form a faint precipitation line with a spur, indicating that the two P-450MCs have a common antigenic site but are not immunologically identical. When incubated with [14C]BP in a reconstituted system containing NADPH-reductase and epoxide hydrolase, hamster pulmonary P-450MC formed much higher amounts of BP diols, especially 7,8-diol, than were formed by rat pulmonary P-450MC.  相似文献   

20.
1-Ethynylpyrene, trans-, & cis-1-(2-bromovinyl)pyrene, methyl 1-pyrenyl acetylene, and phenyl 1-pyrenyl acetylene are substrates for cytochrome P-450 dependent monooxygenases and also inhibitors of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activities in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, trans-1-(2-bromovinyl)pyrene, and methyl 1-pyrenyl acetylene cause a mechanism based inhibition (suicide inhibition) of the benzo[a]pyrene hydroxylase activities in microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, while cis-1-(2-bromovinyl)pyrene only causes suicide inhibition of the hydroxylse activities in the 5,6-benzoflavone induced microsomes and phenyl 1-pyrenyl acetylene does not cause a detectable suicide inhibition of these activities in either type of microsome. Incubation with NADPH and 1-ethynylpyrene, trans-, or cis-1-(2-bromovinyl)pyrene causes a loss of the P-450 content in the microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, but incubations with methyl 1-pyrenyl acetylene or phenyl 1-pyrenyl acetylene did not cause a loss of the P-450 content of either microsomal preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号