首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Endothelial cell-cell contact via VE-cadherin plays an important role in regulating numerous cell functions, including proliferation. However, using different experimental approaches to manipulate cell-cell contact, investigators have observed both inhibition and stimulation of proliferation depending on the adhesive context. In this study, we used micropatterned wells combined with active positioning of cells by dielectrophoresis in order to investigate whether the number of contacting neighbors affected the proliferative response. Varying cell-cell contact resulted in a biphasic effect on proliferation; one contacting neighbor increased proliferation, while two or more neighboring cells partially inhibited this increase. We also observed that cell-cell contact increased the formation of actin stress fibers, and that expression of dominant negative RhoA (RhoN19) blocked the contact-mediated increase in stress fibers and proliferation. Furthermore, examination of heterotypic pairs of untreated cells in contact with RhoN19-expressing cells revealed that intracellular, but not intercellular, tension is required for the contact-mediated stimulation of proliferation. Moreover, engagement of VE-cadherin with cadherin-coated beads was sufficient to stimulate proliferation in the absence of actual cell-cell contact. In all, these results demonstrate that cell-cell contact signals through VE-cadherin, RhoA, and intracellular tension in the actin cytoskeleton to regulate proliferation.  相似文献   

2.
Endogenous protein phosphorylation in plasma membranes isolated from SV 40-transformed mouse fibroblasts was studied in the presence and absence of cyclic nucleotides. Using low concentrations of membrane protein the kinetics of ATP-dependent 32P-incorporation showed a rapid phosphorylation reaction up to 2 sec of incubation which was stimulated by cAMP and inhibited by cGMP. This short-time phosphorylation reaction was followed by a rapid dephosphorylation and a slower rephosphorylation. This phenomenon was dependent on protein concentration.  相似文献   

3.
4.
We have compared the EGF responses of A431 cells when grown as monolayers at a variety of cell densities or as multicellular spheroids in order to investigate the effects of cell contact and 3-dimensional structure on signal transduction. Proliferation of the A431 squamous carcinoma cell line grown in our laboratory was unaffected by EGF when grown in monolayer culture. As 3-dimensional, multicellular spheroids, however, growth was stimulated by EGF. The maximum volume attainable in the presence of EGF was more than 30 times that in its absence. EGF-dependent tyrosine phosphorylation was compared under these conditions by immunohistochemistry and Western blotting. In initial experiments using published procedures, tyrosine phosphorylation was density-dependent in monolayers and undetectable in spheroids. However, the density-dependence was abolished by the addition of high concentrations of protein tyrosine phosphatase inhibitors (1 mM Zn++ and VO4(3)-). The density dependence of EGF-stimulated tyrosine phosphorylation in monolayers was, therefore, largely the result of changes in phosphatase activity rather than kinase. Using high concentrations of phosphatase inhibitors, phosphotyrosine was clearly visible by immunohistochemistry in the outermost cells of spheroids, but it was still not visible in the spheroid center. The lack of response within the spheroid was not related to the presence of EGF receptor nor diffusion of EGF. In companion experiments, we showed that staining for EGF receptor was present homogeneously throughout the spheroid and that EGF penetrated to its center under the conditions of the experiment. Thus, although an increase in tyrosine phosphatase activity was a major factor affecting tyrosine phosphorylation in the outer cells, other factors were important in the inner cells. We concluded that an increase of tyrosine phosphatase activity was the most important component of the adaptation of the EGF signal transduction system to high cell density in monolayer cultures. In spheroids, tyrosine phosphatases are also enhanced, but other factors, such as autocrine synthesis of TGF-alpha and possibly the cellular distribution of EGF receptors and cell shape, play a role.  相似文献   

5.
In this study isolated cortical regions of both penetrated and nonpenetrated Syrian hamster eggs were examined in whole mounts and platinum replicas of detergent-extracted cortical patches. Two types of cytoskeletal organization were observed in the egg cortex: Loose networks (LN regions) with integrated localized dense networks (LDN regions). Decoration with heavy meromyosin and labeling with antiactin/protein G gold both indicate that the cortical cytoskeleton consists mainly of a LN of actin microfilaments and several types of nonactin filaments, whereas LDN regions dispersed within the LN were comprised of nonactin filaments. Cortical patches and replicas of eggs incubated with sperm for 10-15 min provide evidence that cortical microfilaments may be intimately associated with penetrating spermatozoa. The results of this investigation provide the first high resolution view of the cortical cytoskeletal domain of a mammalian egg and suggest that actin microfilaments might play a role in sperm penetration of the egg cortex.  相似文献   

6.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

7.
Catalytic (SH1) domains of protein tyrosine kinases (PTKs) demonstrate specificity for peptide substrates. Whether SH1 domains differentiate between tyrosines in a physiological substrate has not been confirmed. Using purified proteins, we studied the ability of Syk, Fyn, and Abl to differentiate between tyrosines in a common PTK substrate, c-Cbl. We found that each kinase produced a distinct pattern of c-Cbl phosphorylation, which altered the phosphotyrosine-dependent interactions between c-Cbl and CrkL or phosphatidylinositol 3'-kinase (PI3-K). Our data support the concept that SH1 domains determine the final sites of phosphorylation once PTKs reach their target proteins.  相似文献   

8.
M M Hosey  M Tao 《Biochemistry》1977,16(21):4578-4583
This report describes the substrate and phosphoryl donor specificities of solubilized erythrocyte membrane cyclic adenosine 3',5'-monophosphate (cAMP)-independent protein kinases toward human and rabbit erythrocyte membrane proteins. Three types of substrate preparations have been utilized: heat-inactivated ghosts, isolated spectrin, and 2,3-dimethylmaleic anhydride (DMMA)-extracted membranes. A 30 000-dalton protein kinase, extracted from either human or rabbit erythrocyte membranes, catalyzes the phosphorylation of heat-inactivated membranes in the presence of ATP. The resulting phosphorylation profile is analogous to that of the autophosphorylation of membranes with ATP (in the absence of cAMP). These kinases also phosphorylate band 2 of isolated spectrin and band 3, but not glycophorin, in the DMMA-extracted ghosts. The ability of the 30 000-dalton kinases to use GTP as a phosphoryl donor appears to be related to the substrate or some other membrane factor. A second kinase, which is 100 000 daltons and derived from rabbit erythrocyte membranes, uses ATP or GTP to phosphorylate membrane proteins 2, 2.1, 2.9-3 in heat-inactivated ghosts, band 2 in isolated spectrin, glycophorin, and to a lesser extent, band 3 in the DMMA-extracted ghosts.  相似文献   

9.
Associations between plasma membrane-linked proteins and the actin cytoskeleton play a crucial role in defining cell shape and determination, ensuring cell motility and facilitating cell-cell or cell-substratum adhesion. Here, we present evidence that CEACAM1-L, a cell adhesion molecule of the carcinoembryonic antigen family, is associated with the actin cytoskeleton. We have delineated the regions involved in actin cytoskeleton association to the distal end of the CEACAM1-L long cytoplasmic domain. We have demonstrated that CEACAM1-S, an isoform of CEACAM1 with a truncated cytoplasmic domain, does not interact with the actin cytoskeleton. In addition, a major difference in subcellular localization of the two CEACAM1 isoforms was observed. Furthermore, we have established that the localization of CEACAM1-L at cell-cell boundaries is regulated by the Rho family of GTPases. The retention of the protein at the sites of intercellular contacts critically depends on homophilic CEACAM1-CEACAM1 interactions and association with the actin cytoskeleton. Our results provide new evidence on how the Rho family of GTPases can control cell adhesion: by directing an adhesion molecule to its proper cellular destination. In addition, these results provide an insight into the mechanisms of why CEACAM1-L, but not CEACAM1-S, functions as a tumor cell growth inhibitor.  相似文献   

10.
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.  相似文献   

11.
GPI-anchored surface proteins mediate many important functions, including transport, signal transduction, adhesion, and protection against complement. They cluster into glycolipid-based membrane domains and caveolae, plasmalemmal vesicles involved in the transcytosis and endocytosis of these surface proteins. However, in lymphocytes, neither the characteristic flask shaped caveolae nor caveolin, a transmembrane protein typical of caveolae, have been observed. Here, we show that the GPI-anchored CD59 molecule on Jurkat T cells is internalized after cross-linking, a process inhibited by nystatin, a sterol chelating agent. Clustered CD59 molecules mostly accumulate in non-coated invaginations of the lymphocyte membrane before endocytosis, in marked contrast with the pattern of CD3-TCR internalization. Cytochalasin H blocked CD59 internalization in lymphocytes, but neither CD3 internalization nor transferrin uptake. Confocal microscopy analysis of F-actin distribution within lymphocytes showed that CD59 clusters were associated with patches of polymerized actin. Also, we found that internalization of CD59 was prevented by the protein kinase C inhibitor staurosporine and by the protein kinase A activator forskolin. Thus, in lymphocytes, as in other cell types, glycolipid-based domains provide sites of integration of signaling pathways involved in GPI-anchored protein endocytosis. This process, which is regulated by both protein kinase C and A activity, is tightly controlled by the dynamic organization of actin cytoskeleton, and may be critical for polarized contacts of circulating cells.  相似文献   

12.
Neutrophil-mediated organ damage is a common feature of many disease states. We previously demonstrated that resuscitation with hypertonic salt solutions prevented the endotoxin-induced leukosequestration and consequent lung injury, and this effect was partially attributed to an altered surface expression of adhesion molecules, CD11b and L-selectin. In this study we investigated the mechanisms whereby osmotic stress evokes L-selectin shedding. The metalloprotease inhibitor RO 31-9790 prevented the osmotic down-regulation of L-selectin, indicating that this process was catalyzed by the same "sheddase" responsible for L-selectin cleavage induced by diverse inflammatory stimuli. The trigger for hypertonic shedding was cell shrinkage and not increased osmolarity, ionic strength, or intracellular pH. Volume reduction caused robust tyrosine phosphorylation and its inhibition by genistein and erbstatin abrogated shedding. Shrinkage stimulated tyrosine kinases Hck, Syk, and Pyk2, but prevention of their activation by the Src-family inhibitor PP1 failed to affect the L-selectin response. Hypertonicity elicited the Src family-independent activation of p38, and the inhibition of this kinase by SB203580 strongly reduced shedding. p38 was also essential for the N-formyl-methionyl-leucyl-phenylalanine- and lipopolysaccharide-induced shedding but not the phorbol ester-induced shedding. Thus, cell volume regulates L-selectin surface expression in a p38-mediated, metalloprotease-dependent manner. Moreover, p38 has a central role in shedding induced by many inflammatory mediators.  相似文献   

13.
Summary The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.  相似文献   

14.
15.
The term “contact inhibition of cell division” was borrowed from “contact inhibition of cell movement.” We prefer the term “postconfluence inhibition of cell division” as being more operational and less mechanistically biased; it is operationally defined as a pronounced depression of the mitotic rate in a postconfluent culture which displays a stationary density despite periodic nutrient renewal, the inhibition being locally reversibly by removal of the adjacent cells. The mechanism of postconfluence inhibition is of considerable interest because of the inverse correlation between postconfluence inhibition and the tumorigenicity of a number of cell lines. Several hypotheses, involving direct cell-to-cell contacts or locally restricted diffusion gradiens, could explain postconfluence inhibition. With the goal of discriminating among these hypotheses, time-lapse films were taken of carefully regulated, perfused cultures of 3T3 mouse cells, in which the transition from rapid growth to the stationary phase was recorded. Measurements of cell-to-cell contact, local cell density, and generation times were made on an individual cell level and analyzed with the aid of a computer. We observed that all-around cell-cell contact or a high local cell density present throughout G1 often did not produce immediate inhibition of cell division. We conclude that either (i) simple visible cell-cell contacts or a high local cell density are not the direct cause of postconfluence inhibition of cell division, or (ii) their effects often do not inhibit cell division until after a delay of about one cell generation time. Such a delay may be partly responsible for the 50% overshoot past the stationary density that we observed in 3T3 cultures.  相似文献   

16.
The small guanosine triphosphatase Rac1 is activated by E-cadherin-mediated cell-cell adhesion and is required for the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact. However, the modes of activation and action of Rac1 remain to be clarified. We here found that suppression of IQGAP1, an actin-binding protein and an effector of Rac1, by small interfering RNA apparently reduced the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact in Madin-Darby canine kidney II epithelial cells under the conditions in which knockdown of Rac1 reduced them. Knockdown of Rac1 did not affect the localization of these junctional components in cells expressing a constitutively active IQGAP1 mutant defective in Rac1/Cdc42 binding. Knockdown of either Rac1 or IQGAP1 accelerated the 12-O-tetradecanoylphorbol-13-acetate-induced cell-cell dissociation. The basal Rac1 activity, which was maintained by E-cadherin-mediated cell-cell adhesion, was inhibited in the IQGAP1-knocked down cells, whereas the Rac1 activity was increased in the cells overexpressing IQGAP1. Together, these results indicate that Rac1 enhances the accumulation of actin filaments, E-cadherin, and β-catenin by acting on IQGAP1 and suggest that there exists a positive feedback loop comprised of “E-cadherin-mediated cell-cell adhesion→Rac1 activation→actin-meshwork formation by IQGAP1→increasing E-cadherin-mediated cell-cell adhesion.”  相似文献   

17.
Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein-tyrosine kinase implicated in integrin-mediated signal transduction pathways and in the process of oncogenic transformation by v-Src. Elevation of FAK's phosphotyrosine content, following both cell adhesion to extracellular matrix substrata and cell transformation by Rous sarcoma virus, correlates directly with an increased kinase activity. To help elucidate the role of FAK phosphorylation in signal transduction events, we used a tryptic phosphopeptide mapping approach to identify tyrosine sites of phosphorylation responsive to both cell adhesion and Src transformation. We have identified four tyrosines, 397, 407, 576, and 577, which are phosphorylated in mouse BALB/3T3 fibroblasts in an adhesion-dependent manner. Tyrosine 397 has been previously recognized as the major site of FAK autophosphorylation. Phosphorylation of tyrosines 407, 576, and 577, which are previously unrecognized sites, is significantly elevated in the presence of c-Src in vitro and v-Src in vivo. Tyrosines 576 and 577 lie within catalytic subdomain VIII--a region recognized as a target for phosphorylation-mediated regulation of protein kinase activity. We found that maximal kinase activity of FAK immune complexes requires phosphorylation of both tyrosines 576 and 577. Our results indicate that phosphorylation of FAK by Src (or other Src family kinases) is an important step in the formation of an active signaling complex.  相似文献   

18.
Lateral motion of the viral envelope proteins in the target cell membrane was shown recently to be essential for cell fusion by Sendai virus (Henis, Y. I., Herman-Barhom, Y., Aroeti, B., and Gutman, O. (1989) J. Biol. Chem. 264, 17119-17125). To explore the mechanism that gives rise to this requirement, we have now investigated the distribution of Sendai virus envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) on human erythrocytes in the course of fusion, using fluorescence microscopy and image analysis. In these studies, both the F and the HN proteins were found to accumulate in cell-cell contact regions, on the time scale of the fusion process. We propose that migration of the viral glycoproteins to cell contact regions and accumulation at the contact sites are essential parts of the fusion mechanism and form the basis to the requirement for their lateral motion in the fusion event.  相似文献   

19.
The effect of polyamines on the chromatin phosphorylation by endogenous protein kinases was investigated. Polyamines not only selectively stimulated the phosphorylation of chromatin proteins but also concurrently inhibited the phosphorylation of a number of polypeptides. In particular, a 11,000-dalton polypeptide with pI 4.5–5.0 was highly phosphorylated in the absence of polyamines, despite being a minor component whereas the phosphorylation was strongly inhibited in the presence of polyamines.  相似文献   

20.
We have investigated the effect of staurosporine-type protein kinase inhibitors, displaying different enzyme specificity, on the association of actin with the neutrophil cytoskeleton. In resting cells, nanomolar concentrations of staurosporine induced a rapid increase in cytoskeleton-associated actin. Other inhibitors, more specific for protein kinase C (PKC) or kinases dependent on cyclic nucleotides, induced a much smaller response, indicating that inhibition of these enzymes is not involved in the staurosporine-dependent rise. Therefore, inhibition of an unknown staurosporine-sensitive enzyme, not identical with PKC or one of the cyclic nucleotide-dependent kinases, can trigger an increase in cytoskeletal actin. It is well known that chemotactic peptide induces a rapid rise in cytoskeletal actin, followed by a decrease at later times after the onset of activation. Preincubation with CGP 41,251, a relatively specific inhibitor for PKC, did not affect these two events at concentrations of the drug which, in separate experiments, inhibited markedly phorbol ester induced protein phosphorylation in intact neutrophils. Thus the chemotactic peptide-induced changes in the level of cytoskeletal actin appear to be independent of PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号