首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   

2.
Aberrant upregulation of COX-2 enzyme resulting in accumulation of PGE2 in a cancer cell environment is a marker for progression of many cancers, including breast cancer. Four subtypes of cell surface receptors (EP1, EP2, EP3, and EP4), which are coupled with different G-proteins, mediate PGE2 actions. Since migration is an essential step in invasion and metastasis, in the present study we defined the expression of EP receptors and their roles in migratory function of breast cancer cells of murine (C3L5) and human (MDA-MB-231 and MCF-7) origin. Highly metastatic C3L5 and MDA-MB-231 cells, found to be highly migratory in a Transwell migration assay, were shown to accumulate much higher levels of PGE2 in culture media in comparison with nonmetastatic and poorly migrating MCF-7 cells; the levels of PGF2alpha and 6-keto-PGF1alpha were low in all cases. The elevated PGE2 production by metastatic cancer cells was due to COX-2 activity since dual COX-1/2 inhibitor indomethacin and selective COX-2 inhibitor NS-398 equally suppressed both basal and inducible (by IFN-gamma/LPS or Ca2+-ionophores) PGE2 accumulation. RT-PCR analysis revealed that murine C3L5 cells expressed mRNA of EP1, EP3, and EP4 but not EP2 receptors. On the other hand, human MDA-MB-231 and MCF-7 cells expressed all the above receptors. High levels of expression of functional EP4 receptors coupled with Gs-protein was confirmed in C3L5 cells by biochemical assay showing a dose-dependent increase of intracellular cAMP synthesis in response to PGE2. EP receptor antagonists SC-19220, AH-6809, and AH-23848B, having highest affinity for EP1, EP1/EP2/DP, and EP4 receptors, respectively, variably inhibited migration of metastatic breast cancer cells. An autocrine PGE2-mediated migratory activity of these cells appeared to be associated predominantly with EP4 receptor-mediated signaling pathway, which uses cAMP as a second messenger. This conclusion is based on several observations: (1) selective EP4 antagonist AH-23848B effectively inhibited migration of both C3L5 and MDA-MB-231 cells in a dose-dependent manner; (2) exogenous PGE2 and EP4 agonist PGE1 alcohol increased migration of C3L5 cells; (3) forskolin, a potent activator of adenylate cyclase, as well as membrane-permeable analogues of cAMP (8-bromo-cAMP, dibutyryl-cAMP) stimulated migration of C3L5 cells; and (4) Rp-cAMPS, a selective protein kinase A inhibitor, reduced migration of C3L5 cells. Migration of poorly migratory MCF-7 cells remained unaffected with either PGE2 or EP4 antagonist. These findings are relevant for designing therapeutic strategies against breast cancer metastasis.  相似文献   

3.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

4.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

5.
Recent evidence suggests that prostanoids are an important participant in the pathobiology of gastric adenocarcinoma, but the location and identity of cells in tumor-adjacent gastric mucosa able to synthesize and/or bind specific prostanoids is not clear. Using probes for cyclooxygenase 1 and 2 mRNA and protein as well as for the EP family of PGE(2) receptors, we sought to define the biology of prostanoids in adjacent human gastric mucosa at the site of tumor invasion.In mucosa adjacent to an invasive gastric adenocarcinoma, expression of cyclooxygenase was prominent, with COX 1 primarily in mucosal T lymphocytes surrounding nests of tumor cells. Densitometry showed these tumor-adjacent cells had substantial levels of COX 1 immunoreactive protein (relative intensity, 3.2). Cyclooxygenase 2 was newly expressed among these cells as well, but was limited in number (<25% of cyclooxygenase-positive T lymphocytes) in tumor-adjacent mucosa. Further, CD3(+) mononuclear cells, adjacent to tumor, strongly expressed prostanoid receptor EP(4) (relative intensity, 8.0), but cells with this receptor were not evident in the tumor itself. In contrast, normal gastric mucosa showed a consistent and structured expression of cyclooxygenase and PGE(2) receptor immunoreactive protein among mucosal cells. Cyclooxygenase 1 and PGE(2) receptor EP(4) were expressed on mucosal CD3(+) T lymphocytes in the lumenal (upper) third of gastric mucosa; and prostanoid receptors EP(2), EP(3) and EP(4), on gastric epithelia lining gastric pits. In situ hybridization with COX cDNAs confirmed these findings, and neither COX 2-specific mRNA nor protein was detected in normal gastric tissue. Our studies suggest that synthetic machinery and receptors for PGE(2), prominently expressed by T lymphocytes in gastric mucosa at the boundary of normal mucosa with tumor cells, may play a central role in prostanoid-driven tumorigenesis of this tissue.  相似文献   

6.
Chronic ingestion of non-steroidal anti-inflammatory medication is reported to delay or, in part, reverse development of polyps in the colon, but the mechanism for this effect is unknown. Using mRNA and immunoglobulin probes, specific for prostanoid receptors and for prostaglandin endoperoxide synthase (COX 1 and 2), we sought to define, by in situ and in vitro techniques, changes in PGE2 receptors and synthesis in cell populations of precancerous familial adenomatous polyposis (FAP) colonic mucosa. In FAP, expression of prostanoid receptors EP3 and EP4 among colonic lamina propria mononuclear and lateral crypt epithelial cells was robust, with 53.9+/-5.3% of mononuclear cells staining EP4+. When sections of normal colonic mucosa were examined by similar techniques, prostanoid receptor EP4 was expressed on only 21.3+/-1.2% of lamina propria mononuclear cells (including CD4+ T lymphocytes), as well as on surface and lateral crypt epithelium, and this distribution was found at the mRNA level as well. When receptor expression was quantitated by densitometry, immunoreactive EP3 protein on deep basolateral (but not other) FAP crypt epithelium was enhanced 2.8-fold over normal, and the number of prostanoid receptor EP4+ mononuclear cells by 2.5-fold. On the other hand, while COX 1 expression in mononuclear cells was prominent in normal and FAP mucosa, densitometric analysis showed immunoreactive prostaglandin endoperoxide synthase levels were further increased in FAP, due to a greater than fourfold elevation of COX 2 expression among mononuclear cells and epithelia. Our data suggest enhanced cell-specific prostanoid receptor expression and increased prostanoid synthesis in precancerous FAP mucosa.  相似文献   

7.
Prostaglandin E2 (PGE2), the principal pro-inflammatory prostanoid, is known to play versatile roles in pain transmission via four PGE receptor subtypes, EP1-EP4. We recently demonstrated that continuous production of nitric oxide (NO) by neuronal NO synthase (nNOS) following phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) and NMDA receptor NR2B subunits is essential for neuropathic pain. These phosphorylation and nNOS activity visualized by NADPH-diaphorase histochemistry were blocked by indomethacin, a PG synthesis inhibitor. To clarify the interaction between cyclooxygenase and nNOS pathways in the spinal cord, we examined the effect of EP subtype-selective agonists on NO production. NO formation was stimulated in the spinal superficial layer by EP1, EP3, and EP4 agonists. While the EP1- and the EP4-stimulated NO formation was markedly blocked by MK-801, an NMDA receptor antagonist, the EP3-stimulated one was completely inhibited by H-1152, a Rho-kinase inhibitor. Phosphorylation of MARCKS and NADPH-diaphorase activity stimulated by the EP3 agonist were also blocked by H-1152. These results suggest that PGE2 stimulates NO formation by Rho-kinase via EP3, a mechanism(s) different from EP1 and EP4.  相似文献   

8.
Destruction of Kupffer cells with gadolinium chloride (GdCl(3)) and intestinal sterilization with antibiotics diminished ethanol-induced steatosis in the enteral ethanol feeding model. However, mechanisms of ethanol-induced fatty liver remain unclear. Accordingly, the role of Kupffer cells in ethanol-induced fat accumulation was studied. Rats were given ethanol (5 g/kg body wt) intragastrically, and tissue triglycerides were measured enzymatically. Kupffer cells were isolated 0-24 h after ethanol, and PGE(2) production was measured by ELISA, whereas inducible cyclooxygenase (COX-2) mRNA was detected by RT-PCR. As expected, ethanol increased liver triglycerides about threefold. This increase was blunted by antibiotics, GdCl(3), the dihydropyridine-type Ca(2+) channel blocker nimodipine, and the COX inhibitor indomethacin. Ethanol also increased PGE(2) production by Kupffer cells about threefold. This increase was also blunted significantly by antibiotics, nimodipine, and indomethacin. Furthermore, tissue triglycerides were increased about threefold by PGE(2) treatment in vivo as well as by a PGE(2) EP(2)/EP(4) receptor agonist, whereas an EP(1)/EP(3) agonist had no effect. Moreover, permeable cAMP analogs also increased triglyceride content in the liver significantly. We conclude that PGE(2) derived from Kupffer cells, which are activated by ethanol, interacts with prostanoid receptors on hepatocytes to increase cAMP, which causes triglyceride accumulation in the liver. This mechanism is one of many involved in fatty liver caused by ethanol.  相似文献   

9.
INTRODUCTION: We hypothesize that adenosine and PGE(2) could have a complementary immunosuppressive effect that is mediated via common cAMP-PKA signaling. MATERIALS AND METHODS: To test this hypothesis, the effect of adenosine and PGE(2) on the cytotoxic activity and cytokine production of lymphokine activated killer (LAK) cells was investigated. RESULTS: PGE(2) and adenosine inhibited LAK cells cytotoxic activity and production of INF-gamma, GM-CSF and TNF-alpha. In combination they showed substantially higher inhibition than each modality used alone. Using agonists and antagonists specific for PGE(2) and adenosine receptors we found that cooperation of PGE(2) and adenosine in their inhibitory effects are mediated via EP(2) and A(2A) receptors, respectively. LAK cells have 35-fold higher expression of EP(2) than A(2A). Combined PGE(2) and adenosine treatment resulted in augmentation of cAMP production, PKA activity, CREB phosphorylation and inhibition of Akt phosphorylation. Wortmannin and LY294002 enhanced the suppressive effects of adenosine and PGE(2). In contrast, Rp-8-Br-cAMPS, an inhibitor of PKA type I blocked their immunosuppressive effects, suggesting that the inhibitory effects of PGE(2) and adenosine are mediated via common pathway with activation of cAMP-PKA and inhibition of Akt. CONCLUSION: In comparison to other immunosuppressive molecules (TGF-beta and IL-10), adenosine and PGE(2) are unique in their ability to inhibit the executive function of highly cytotoxic cells. High intratumor levels of adenosine and PGE(2) could protect tumor from immune-mediated destruction by inactivation of the tumor infiltrating functionally active immune cells.  相似文献   

10.
11.
12.
Cyclooxygenase (COX) and its prostanoid metabolites have been implicated in the control of cell survival; however, their role as mitogens remains undefined. To better understand the role of prostanoids on cell growth, we used mouse colon adenocarcinoma (CT26) cells to investigate the role of prostaglandin E(2) (PGE(2)) in cell proliferation. CT26 cells express both COX1 and COX2 and metabolize arachidonic acid to PGE(2.) Treatment with indomethacin, or COX-selective inhibitors, prevents PGE(2) biosynthesis and CT26 cell proliferation. The anti-proliferative effects of COX inhibition are rescued specifically by treatment with PGE(2) or the EP4 receptor-selective agonist PGE(1)-OH via phosphatidylinositol 3-kinase/extracellular signal-regulated kinase (ERK) activation, thus providing a functional link between PGE(2)-induced cell proliferation and EP4-mediated ERK signaling. Indomethacin or COX2 inhibitors, but not COX1 inhibitors, reduced the size and number of CT26-derived tumors in vivo. These inhibitory effects are paralleled by marked declines in the levels of tumor PGE(2), suggesting that their anti-tumor effects are directly associated with the inhibition of COX2 enzymatic activity. The described anti-tumor effects of indomethacin are evident whether it is administered at the time of, or 7 days after, tumor cell injection, suggesting that it has tumor preventive and therapeutic actions. Furthermore, the observation that indomethacin increases the survival rates of tumor-bearing mice, even after withdrawal of the drug, indicates that its effects are long lasting and that it may be potentially useful for the prevention and the clinical management of human cancers.  相似文献   

13.
14.
In some cancers cyclooxygenase (COX) inhibition appears to be anti-mitogenic and anti-angiogenic, but the actions of COX-derived prostaglandins in pancreatic cancer (PaCa) are unknown. In this study COX-2 was detected in three of six PaCa cell lines while COX-1 was identified in all cell lines. COX-2 expression correlated with basal and arachidonic acid (AA) stimulated PGE(2) production. PGE(2) production was inhibited by the COX-2 inhibitor nimesulide. In COX-2 expressing cells, exogenous AA and PGE(2) increased VEGF synthesis via the EP(2) receptor. Whereas PGE(2) stimulated intracellular cAMP formation in COX-2 positive and negative cells, 8-bromo cAMP stimulated VEGF production only in COX-2 expressing cells. Stimulating COX-2 expressing PaCa cell lines with AA enhanced migration of endothelial cells, an effect which was inhibited by a COX-2 inhibitor and EP(2) receptor antagonist. These data identify a subset of human PaCa cell lines that express functional COX-2 enzyme. PGE(2) generated by specific COX-2 activity increases VEGF secretion in human PaCa cells through an autocrine mechanism.  相似文献   

15.
Prostaglandins (PG) are produced by the enzymatic activity of cyclooxygenase (COX). PGs and COX have been implicated in the pathophysiology of excitotoxicity and neurodegeneration in the central nervous system (CNS). The PGE2 receptor EP3 is the most abundantly expressed PGE2 receptor subtype in the brain. So far, in the innate rat brain EP3 receptors have been found exclusively in neurons. The aim of this study was to investigate whether EP3 expression in the brain changes under neurodegenerative circumstances such as an acute excitotoxic lesion. Intrastriatal injection of quinolinic acid (QUIN) resulted in a loss of EP3-positive striatal neurons, while simultaneously small glial-shaped EP3-positive cells appeared. Five days after lesioning, 63% of the glial-shaped EP3-positive cells could be identified as ED-1 expressing microglial cells. This percentage increased to 82% after 10 days, suggesting that most of the EP3-positive ED-1-negative cells on day 5 may be microglia which did not yet express ED-1. ED-1-positive microglia also expressed COX-1. These experiments show for the first time that activated microglial cells in excitotoxic lesions express in vivo the PGE2 receptor EP3 and the PGE2 synthesizing enzyme COX-1. Activation of EP3 receptor downregulates cAMP formation and may counteract the upregulation of cAMP formation via EP2 receptors, which has been linked to the anti-inflammatory effects of PGs. This change in EP3-receptor expression in microglia might participate in acute or chronic microglial activation in a variety of brain diseases such as ischemia or Alzheimer's disease (AD). Investigation of the expression of different PGE2 receptor subtypes might promote a better understanding of the pathophysiology of these diseases as well as leading to a modulation of microglial activation by a more specific interference with selective EP receptors than can be achieved by inhibiting global PG synthesis by selective or non-selective COX inhibitors.  相似文献   

16.
17.
Cytochrome P-450 is an important bioactivation-detoxification system in vivo. Its expression is regulated by foreign chemicals and dietary factors, and lipids have been found to regulate its gene expression. We showed previously that prostaglandin E(2) (PGE(2)), a fatty acid metabolite, down-regulates cytochrome P-450 2B1 (CYP 2B1) expression induced by phenobarbital. The objective of the present study was to determine whether PGE(2) type 2 receptor (EP(2))-which is coupled to Gs-protein when bound by PGE(2), leading to cAMP production-is involved in this down-regulation. We also determined the possible roles of EP(2) downstream pathways in this down-regulation. We used a primary rat hepatocyte culture model in which EP(2) was shown to be present to study this question. The intracellular cAMP concentration in primary rat hepatocytes was significantly higher after treatment with 1microM PGE(2) than after treatment with 0, 0.01, or 0.1microM PGE(2). Butaprost, an EP(2) agonist, down-regulated CYP 2B1 expression in a dose-dependent manner. SQ22536, an adenylate cyclase inhibitor, reversed the down-regulation by PGE(2) as did H-89, a protein kinase A inhibitor. These results suggest that EP(2) and the downstream pathways of cAMP and protein kinase A are involved in the down-regulation of CYP 2B1 expression by PGE(2) in the presence of phenobarbital.  相似文献   

18.
19.
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.  相似文献   

20.
Exposure to pathogens induces dendritic cells to release inflammatory cytokines and chemokines. The inflammatory response is controlled by endogenous agents such as anti-inflammatory cytokines, glucocorticoids, anti-inflammatory neuropeptides, and lipid mediators. This study is the first report on the inhibition by prostaglandin E2 (PGE2) of TNF release from bone marrow-derived dendritic cells stimulated with lipopolysaccharide (LPS), a TLR4 ligand, or peptidoglycan, a TLR2 ligand. The inhibition of TNF occurs at both mRNA and protein level. The inhibitory effect of PGE2 is mediated by the EP2 and EP4 receptors, and involves both PKA signaling and mediation by DC-derived IL-10. Intraperitoneal administration of PGE2 together with LPS results in a reduction in serum TNF and intracellular TNF in peritoneal exudate cells, compared to LPS alone. In addition, administration of PGE2 in vivo reduces the numbers of CD11c+ DCc that accumulate in the peritoneal cavity in response to LPS. The various implications of the PGE2-induced reduction in TNF are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号