首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Closely related penta- and octaheme nitrite reductases catalyze the reduction of nitrite, nitric oxide, and hydroxylamine to ammonium and of sulfite to sulfide. NrfA pentaheme nitrite reductase plays the key role in anaerobic nitrate respiration and the protection of bacterial cells from stresses caused by nitrogen oxides and hydrogen peroxide. Octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus are less studied, and their function in the cell is unknown. In order to estimate the possible role of octaheme nitrite reductases in the cell resistance to oxidative stress, the peroxidase activity of the enzyme from T. nitratireducens (TvNiR) has been studied in detail. Comparative analysis of the active site structure of TvNiR and cytochrome c peroxidases has shown some common features, such as a five-coordinated catalytic heme and identical catalytic residues in active sites. A model of the possible productive binding of peroxide at the active site of TvNiR has been proposed. The peroxidase activity has been measured for TvNiR hexamers and trimers under different conditions (pH, buffers, the addition of CaCl2 and EDTA). The maximum peroxidase activity of TvNiR with ABTS as a substrate (k cat = 17 s–1; k cat/K m = 855 mM–1 s–1) has been 100–300 times lower than the activity of natural peroxidases. The different activities of TvNiR trimers and hexamers indicate that the rate-limiting stage of the reaction is not the catalytic event at the active site but the electron transfer along the heme c electron-transport chain.  相似文献   

2.
Bacterial pentaheme cytochrome c nitrite reductases (NrfAs) are key enzymes involved in the terminal step of dissimilatory nitrite reduction of the nitrogen cycle. Their structure and functions are well studied. Recently, a novel octaheme cytochrome c nitrite reductase (TvNiR) has been isolated from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. Here we present high-resolution crystal structures of the apoenzyme and its complexes with the substrate (nitrite) and the inhibitor (azide). Both in the crystalline state and in solution, TvNiR exists as a stable hexamer containing 48 hemes—the largest number of hemes accommodated within one protein molecule known to date. The subunit of TvNiR consists of two domains. The N-terminal domain has a unique fold and contains three hemes. The catalytic C-terminal domain hosts the remaining five hemes, their arrangement, including the catalytic heme, being identical to that found in NrfAs. The complete set of eight hemes forms a spatial pattern characteristic of other multiheme proteins, including structurally characterized octaheme cytochromes. The catalytic machinery of TvNiR resembles that of NrfAs. It comprises the lysine residue at the proximal position of the catalytic heme, the catalytic triad of tyrosine, histidine, and arginine at the distal side, channels for the substrate and product transport with a characteristic gradient of electrostatic potential, and, finally, two conserved Ca2+-binding sites. However, TvNiR has a number of special structural features, including a covalent bond between the catalytic tyrosine and the adjacent cysteine and the unusual topography of the product channels that open into the void interior space of the protein hexamer. The role of these characteristic structural features in the catalysis by this enzyme is discussed.  相似文献   

3.
The trihemic bacterial cytochrome c peroxidase from Escherichia coli, YhjA, is a membrane-anchored protein with a C-terminal domain homologous to the classical bacterial peroxidases and an additional N-terminal (NT) heme binding domain. Recombinant YhjA is a 50?kDa monomer in solution with three c-type hemes covalently bound. Here is reported the first biochemical and spectroscopic characterization of YhjA and of the NT domain demonstrating that NT heme is His63/Met125 coordinated. The reduction potentials of P (active site), NT and E hemes were established to be ?170?mV, +133?mV and +210?mV, respectively, at pH?7.5. YhjA has quinol peroxidase activity in vitro with optimum activity at pH?7.0 and millimolar range KM values using hydroquinone and menadiol (a menaquinol analogue) as electron donors (KM?=?0.6?±?0.2 and 1.8?±?0.5?mM H2O2, respectively), with similar turnover numbers (kcat?=?19?±?2 and 13?±?2?s?1, respectively). YhjA does not require reductive activation for maximum activity, in opposition to classical bacterial peroxidases, as P heme is always high-spin 6-coordinated with a water-derived molecule as distal axial ligand but shares the need for the presence of calcium ions in the kinetic assays. Formation of a ferryl Fe(IV)?=?O species was observed upon incubation of fully oxidized YhjA with H2O2. The data reported improve our understanding of the biochemical properties and catalytic mechanism of YhjA, a three-heme peroxidase that uses the quinol pool to defend the cells against hydrogen peroxide during transient exposure to oxygenated environments.  相似文献   

4.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

5.
ω-Transaminase (ω-TA) is the only naturally occurring enzyme allowing asymmetric amination of ketones for production of chiral amines. The active site of the enzyme was proposed to consist of two differently sized substrate binding pockets and the stringent steric constraint in the small pocket has presented a significant challenge to production of structurally diverse chiral amines. To provide a mechanistic understanding of how the (S)-specific ω-TA from Paracoccus denitrificans achieves the steric constraint in the small pocket, we developed a free energy analysis enabling quantification of individual contributions of binding and catalytic steps to changes in the total activation energy caused by structural differences in the substrate moiety that is to be accommodated by the small pocket. The analysis exploited kinetic and thermodynamic investigations using structurally similar substrates and the structural differences among substrates were regarded as probes to assess how much relative destabilizations of the reaction intermediates, i.e. the Michaelis complex and the transition state, were induced by the slight change of the substrate moiety inside the small pocket. We found that ≈80% of changes in the total activation energy resulted from changes in the enzyme-substrate binding energy, indicating that substrate selectivity in the small pocket is controlled predominantly by the binding step (KM) rather than the catalytic step (kcat). In addition, we examined the pH dependence of the kinetic parameters and the pH profiles of the KM and kcat values suggested that key active site residues involved in the binding and catalytic steps are decoupled. Taken together, these findings suggest that the active site residues forming the small pocket are mainly engaged in the binding step but not significantly involved in the catalytic step, which may provide insights into how to design a rational strategy for engineering of the small pocket to relieve the steric constraint toward bulky substituents.  相似文献   

6.
《Journal of molecular biology》2019,431(17):3246-3260
Many bacteria can switch from oxygen to nitrogen oxides, such as nitrate or nitrite, as terminal electron acceptors in their respiratory chain. This process is called “denitrification” and enables biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa, making it more resilient to antibiotics and highly adaptable to different habitats. The reduction of nitrite to nitric oxide is a crucial step during denitrification. It is catalyzed by the homodimeric cytochrome cd1 nitrite reductase (NirS), which utilizes the unique isobacteriochlorin heme d1 as its reaction center. Although the reaction mechanism of nitrite reduction is well understood, far less is known about the biosynthesis of heme d1. The last step of its biosynthesis introduces a double bond in a propionate group of the tetrapyrrole to form an acrylate group. This conversion is catalyzed by the dehydrogenase NirN via a unique reaction mechanism. To get a more detailed insight into this reaction, the crystal structures of NirN with and without bound substrate have been determined. Similar to the homodimeric NirS, the monomeric NirN consists of an eight-bladed heme d1-binding β-propeller and a cytochrome c domain, but their relative orientation differs with respect to NirS. His147 coordinates heme d1 at the proximal side, whereas His323, which belongs to a flexible loop, binds at the distal position. Tyr461 and His417 are located next to the hydrogen atoms removed during dehydrogenation, suggesting an important role in catalysis. Activity assays with NirN variants revealed the essentiality of His147, His323 and Tyr461, but not of His417.  相似文献   

7.
Horseradish peroxidase isoenzyme C (HRPC) mutants were constructed in order to understand the involvement of two key distal heme cavity residues, histidine 42 and arginine 38, in the formation and structure of the carbon monoxide complex of HRPC (carbonyl HRPC). The rates of CO binding to the wild-type glycosylated and non-glycosylated recombinant (HRPC*) ferrous enzymes were essentially identical and exhibited the same pH dependence with pK as at 7.4 and 4.0. Data obtained with the His-42?→?Leu [(H42L)HRPC*)] and Arg-38?→?Leu [(R38L)HRPC*] mutants allowed the pK a at 7.4 in ferrous HRPC to be assigned to His-42. The infra-red and electronic absorption spectra of HRPC-CO, HRPC*-CO, (R38L)HRPC*-CO and (H42L)HRPC*-CO have been investigated over the pH range 3.0–10.0. HRPC*-CO exhibited two ν?(CO) bands at 1934?cm–1 and 1905?cm–1 whose relative intensity changed with pH, showing an acidic and a basic pK a as previously reported for HRPC [IE Holzbaur; AM English, AA Ismail (1996) J Am Chem Soc 118?:?3354–3359]. (H42L)HRPC*-CO and (R38L)HRPC*-CO exhibited single infra-red bands at 1924.2?cm–1 (pH?7.0) and 1941.5?cm–1 (pH?5.0) respectively. Acidic and alkaline pK as were determined from shifts in the infra-red frequencies and by UV-visible spectrophotometry at the Söret maxima. (H42L)HRPC*-CO exhibited a pK a at ~pH?4.0 but no alkaline pK a. (R38L)HRPC*-CO exhibited a single pK a at pH?6.5. Shifts of 2–3?cm–1 in ν?(CO) with (H42L)HRPC*-CO in D2O show that a distal residue is H-bonding to the CO in this variant at both pD?7.5 and 3.9. However, with (R38L)HRPC*-CO, only a small shift of the ν?(CO) band was observed at pD?5.5. The results are consistent with the involvement of Arg-38 in H-bonding to the CO ligand in HRPC and with His-42 modulating the distribution of carbonyl HRPC conformers below pH?8.7. These data are discussed in terms of the importance of distal pocket polarity in HRPC. It is concluded that His-42 can have a pK a between 4.0 and 8.7 depending on its environment and the nature of the distal ligand at position 38. This enables His-42 to carry out multiple functions during the catalytic cycle of HRPC.  相似文献   

8.
Nitrite reduction to nitric oxide by heme proteins is drawing increasing attention as a protective mechanism to hypoxic injury in mammalian physiology. Here we probe the nitrite reductase (NiR) activities of manganese(II)- and cobalt(II)-substituted myoglobins, and compare with data obtained previously for the iron(II) analog wt MbII. Both MnIIMb and CoIIMb displayed NiR activity, and it was shown that the kinetics are first order each in [protein], [nitrite], and [H+], as previously determined for the FeII analog wt MbII. The second order rate constants (k2) at pH 7.4 and T = 25 °C, were 0.0066 and 0.015 M− 1 s− 1 for CoIIMb and MnIIMb, respectively, both orders of magnitude slower than the k2 (6 M− 1 s− 1) for wt MbII. The final reaction products for MnIIMb consisted of a mixture of the nitrosyl MnIIMb(NO) and MnIIIMb, similar to the products from the analogous NiR reaction by wt Mb. In contrast, the products of NiR by CoIIMb were found to be the nitrito complex CoIIIMb(ONO) plus roughly an equivalent of free NO. The differences can be attributed in part to the stronger coordination of inorganic nitrite to CoIIIMb as reflected in the respective MIIIMb(ONO) formation constants Knitrite: 2100 M− 1 (CoIII) and <~0.4 M− 1 (MnIII). We also report the formation constants (3.7 and 30 M− 1, respectively) for the nitrite complexes of the mutant metmyoglobins H64V MbIII(NO2) and H64V/V67R MbIII(ONO) and a Knitrite revised value (120 M− 1) for the nitrite complex of wt metMb. The respective Knitrite values for the three ferric proteins emphasize the importance of a H-bonding residue, such as His64 in the MbIII distal pocket or the Arg67 in H64V/V67R MbIII, in stabilizing nitrite coordination. Notably, the NiR activities of the corresponding ferrous Mbs follow a similar sequence suggesting that nitrite binding to these centers are analogously affected by the H-bonding residues.  相似文献   

9.
 Most biological substrates have distinctive sizes, shapes, and charge distributions which can be recognized specifically by proteins. In contrast, myoglobin must discriminate between the diatomic gases O2, CO, and NO which are apolar and virtually the same size. Selectivity occurs at the level of the covalent Fe-ligand complexes, which exhibit markedly different bond strengths and electrostatic properties. By pulling a water molecule into the distal pocket, His64(E7)1 inhibits the binding of all three ligands by a factor of ∼10 compared to that observed for protoheme-imidazole complexes in organic solvents. In the case of O2 binding, this unfavorable effect is overcome by the formation of a strong hydrogen bond between His64(E7) and the highly polar FeO2 complex. This favorable electrostatic interaction stabilizes the bound O2 by a factor of ∼1000, and the net result is a 100-fold increase in overall affinity compared to model hemes or mutants with an apolar residue at position 64. Electrostatic interaction between FeCO and His64 is very weak, resulting in only a two- to three-fold stabilization of the bound state. In this case, the inhibitory effect of distal pocket water dominates, and a net fivefold reduction in K CO is observed for the wild-type protein compared to mutants with an apolar residue at position 64. Bound NO is stabilized ∼tenfold by hydrogen bonding to His64. This favorable interaction with FeNO exactly compensates for the tenfold inhibition due to the presence of distal pocket water, and the net result is little change in K NO when the distal histidine is replaced with apolar residues. Thus, it is the polarity of His64 which allows discrimination between the diatomic gases. Direct steric hindrance by this residue plays a minor role as judged by: (1) the independence of K O2, K CO, and K NO on the size of apolar residues inserted at position 64, and (2) the observation of small decreases, not increases, in CO affinity when the mobility of the His64 side chain is increased. Val68(E11) does appear to hinder selectively the binding of CO. However, the extent is no more than a factor of 2–5, and much smaller than electrostatic stabilization of bound O2 by the distal histidine. Received, accepted: 23 May 1997  相似文献   

10.
Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions.  相似文献   

11.
In the denitrification pathway, Pseudomonas aeruginosa cytochrome cd1 nitrite reductase catalyzes the reduction of nitrite to nitric oxide; in vitro, this enzyme is also competent in the reduction of O2 to 2H2O. In this article, we present a comparative kinetic study of the O2 reaction in the wild-type nitrite reductase and in three site-directed mutants (Tyr10-->Phe, His369-->Ala and His327-->Ala/His369-->Ala) of the amino acid residues close to the d1 heme on the distal side. The results clearly indicate that His369 is the key residue in the control of reactivity, as its substitution with Ala, previously shown to affect the reduction of nitrite, also impairs the reaction with O2, affecting both the properties and lifespan of the intermediate species. Our findings allow the presentation of an overall picture for the reactivity of cytochrome cd1 nitrite reductase and extend our previous conclusion that the conserved distal histidines are essential for the binding to reduced d1 heme of different anions, whether a substrate such as nitrite, a ligand such as cyanide, or an intermediate in the O2 reduction. Moreover, we propose that His369 also exerts a protective role against degradation of the d1 heme, by preventing the formation and adverse effects of the reactive O2 species (never present in significant amounts in wild-type cytochrome cd1 nitrite reductase), a finding with clear physiological implications.  相似文献   

12.
Sperm whale oxymyoglobin was isolated directly from muscle and was examined for its stability properties over the wide range of pH 5–13 in 0.1 m buffer at 25 °C. The remarkable pH dependence for the autoxidation rate was analyzed using the kinetic equation derived in terms of nucleophilic displacement processes of O2? from oxymyoglobin by the entering water molecule or hydroxyl ion with the iron resulting in the ferric form. Most of the autoxidation reaction of the oxymyoglobin can be best explained by the proton-catalyzed processes involving the distal histidine as the catalytic residue. The kinetic equation could also be used as an interesting diagnostic probe into differences in the heme reactivity and the heme environment of different types of oxymyoglobin from other sources.  相似文献   

13.
Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO2 ) to Cl and O2. The ability of Cld to promote O2 formation from ClO2 is unusual. Heme enzymes generally utilize ClO2 as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO2 ) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO2 within the distal pocket generates hypochlorite (ClO) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO with compound I forming the Cl and O2 products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O2 may have a preferential direction for exiting the active site.  相似文献   

14.
Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of −233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KMapp) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking.  相似文献   

15.
Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production.  相似文献   

16.
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate l-Arg first to Nω-hydroxyl-l-arginine and then to l-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the l-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of l-Arg analogues exhibiting a wide range of guanidinium pKa values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pKa value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.  相似文献   

17.
A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K+-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4??°C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K+-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K+-site APX mutant are essentially identical to those of cytochrome b 5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K+-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K+-binding site which is located ~8?Å from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.  相似文献   

18.
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.  相似文献   

19.
20.
The catalytic activity of cytochrome c (cyt c) to peroxidize cardiolipin to its oxidized form is required for the release of pro-apoptotic factors from mitochondria, and for execution of the subsequent apoptotic steps. However, the structural basis for this peroxidation reaction remains unclear. In this paper, we determined the three-dimensional NMR solution structure of yeast cyt c Y67H variant with high peroxidase activity, which is almost similar to that of its native form. The structure reveals that the hydrogen bond between Met80 and residue 67 is disrupted. This change destabilizes the sixth coordination bond between heme Fe3+ ion and Met80 sulfur atom in the Y67H variant, and further makes it more easily be broken at low pH conditions. The steady-state studies indicate that the Y67H variant has the highest peroxidase activities when pH condition is between 4.0 and 5.2. Finally, a mechanism is suggested for the peroxidation of cardiolipin catalyzed by the Y67H variant, where the residue His67 acts as a distal histidine, its protonation facilitates O-O bond cleavage of H2O2 by functioning as an acidic catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号